HOWICK INNOVATION... READY TO ROLL

DESIGN CAPACITY TABLES

for
64×41 Lipped Channels
to
AS/NZS 4600
Version 01
June 2019
June 2019
www.howickltd.com

Howick Ltd

Design Capacity Tables for 64 x 41 Lipped Channels to AS/NZS 4600
Published by
Howick Ltd
117 Vincent St
Howick
Auckland 2014

New Zealand

Email: info @howickltd.com
Internet: www.howickltd.com
© Howick Ltd
Version 01 - June 2019

Contact Details

All enquires should be directed to:
Howick Ltd
117 Vincent St
Howick
Auckland 2014
New Zealand
Email: info @howickltd.com
Internet: www.howickltd.com

DISCLAIMER:

Whilst every care has been taken in the preparation of this information, Howick Ltd, and its agents, accept no liability for the accuracy of the information supplied. To the extent permitted by law, Howick Ltd excludes any and all liability in any way, no matter how arising, to any person which may arise out of, in connection with, or as a consequence of, the accuracy or correctness of the information provided or a person relying on some or all of the information provided in this publication.

WARNING:

This publication should not be used without the services of a competent professional with suitable knowledge in the relevant field, and under no circumstances should this publication be relied upon to replace any or all of the knowledge and expertise of that person.

RELEVANCE OF INFORMATION CONTAINED IN THIS PUBLICATION:

Users of this publication should note that the design capacities, calculations, tabulations and other information contained in this publication are specifically relevant to cold-formed steel sections manufactured on Howick roll-forming machines.
Consequently, the information contained in this publication cannot be readily used for coldformed sections produced on machines by other manufacturers, as those sections may vary significantly in geometry and material Standard compliance.

Contents

About Howick Ltd

Engineer Certification
Notations \& Abbreviations

introduction

Scope
Design Method
Limit States Design
Units
Properties of Steel
References
Part 1: Dimensions and Section Properties
Part 2: Members subject to Bending
Part 3 Members subject to Axial Compression
Part 4: Members subject to Axial Tension
Part 5: Members subject to Combined Actions
Part 6: Members with Lips Removed
Part 7: Wall Framing Design Capacities
Appendix A: Signature Curves

About Howick Ltd

Howick Ltd is a well-established and respected, 35 year, family enterprise based in Auckland, New Zealand.

Howick Ltd personifies the concept of "Kiwi ingenuity" showcasing technical experties and creativity and that essential "can do" philosophy that underpins the company's world-leading innovation and quality. Given this success, Howick Ltd is often described as producers of "the world's best steel framing machines."

We are a design and manufacturing company with a global philosophy and reach. Our emphasis is on unique research and development and sophisticated design technology enabling cost-effective, efficient end to end construction systems, across a variety of steel framed projects.

Notations \& Abbreviations

Symbol	
A_{g}	gross area of a cross-section
b	flat width of a flange excluding radii
b_{f}	overall width of a flange
C_{b}	bending coefficient dependent on moment
C_{s}	coefficient for moment about the cnetroidal axis perpendicular to the symmetry axis
$C_{\text {TF }}$	coefficient for unequal end moment
c	distance from the end of a beam to the edge of the bearing force
d	overall depth of a section
d_{l}	depth of the flat portion of a web measured along the plane of the web
d_{L}	overall depth of a lip
E	Young's modulus of elasticity
EOF	End One Flange (concentrated load or reaction on a beam)
ETF	End Two Flange (concentrated load or reaction on a beam)
f_{u}	minimum tensile strength used in design
f_{y}	minimum yield stress used in design
G	shear modulus of elasticity
I_{w}	warping constant for a cross-section
I_{x}	second moment of area about the major principal x -axis
I_{y}	second moment of area about the minor principal y-axis
IOF $^{\text {ITF }}$	Interior One Flange (concentrated load or reaction on a beam)
J	Interior Two Flange (concentrated load or reaction on a beam)
L_{b}	torsion constant for the cross-section
L_{e}	actual length of bearing
L_{ex}	effective length of a member
L_{ey}	effective length for buckling about the major principal x-axis
L_{ez}	effective length for buckling about the minor principal y-axis length for torsional buckling about the longitudinal z-axis
M^{*}	design bending moment

Symbol	Description
$M_{\text {x }}{ }^{*}$	design bending moment about the x -axis
$M_{\text {y }}{ }^{*}$	design bending moment about the y -axis
$M_{\text {b }}$	nominal member moment capacity
$M_{\text {bdx }}$	nominal moment capacity about the x-axis for distortional buckling
$M_{\text {bdyL }}$	nominal moment capacity about the y-axis for distortional buckling (lips in compression)
$M_{\text {bdy }}$	nominal moment capacity about the y-axis for distortional buckling (web in compression)
$M_{\text {bx }}$	nominal member moment capacity about the x-axis
$M_{\text {by }}$	nominal member moment capacity about the y-axis
$M_{\text {byL }}$	nominal member moment capacity about the y -axis (lips in compression)
$M_{\text {byw }}$	nominal member moment capacity about the y-axis (web in compression)
$M_{\text {sx }}$	nominal section moment capacity about the x-axis
$M_{\text {sxf }}$	nominal yield moment capacity about the x-axis
$M_{\text {syft }}$	nominal yield moment capacity about the y-axis (tension in the lips)
$M_{\text {syfT }}$	nominal yield moment capacity about the y -axis (tension in the toes)
$M_{\text {syyw }}$	nominal yield moment capacity about the y-axis (tension in the web)
$M_{\text {syL }}$	nominal section moment capacity about the y-axis (lips in compression)
$M_{\text {syT }}$	nominal section moment capacity about the y -axis (toes in compression)
$M_{\text {syw }}$	nominal section moment capacity about the y-axis (web in compression)
M_{y}	moment causing initial yield at the extreme compression fibre of a full section
N^{*}	design axial force (tension or compression)
$N_{\text {c }}$	nominal member capacity of a member in compression
$N_{\text {cd }}$	nominal capacity of a member in compression for distortional buckling
$N_{\text {ex }}$	elastic buckling load about the major principal x -axis
$N_{\text {ey }}$	elastic buckling load about the minor principal y-axis
$N_{\text {s }}$	nominal section capacity of a member in compression
$N_{\text {t }}$	nominal section capacity of a member in tension

Symbol	
r_{i}	inside corner radius
r_{01}	polar radius of gyration of the cross-section about the shear centre
r_{x}	radius of gyration about the major principal x -axis
r_{y}	radius of gyration about the minor principal y -axis
t	nominal base metal thickness of a section exclusive of coatings
V_{vx}	nominal shear capacity of the cross-section perpendicular to the x -axis
V_{vy}	nominal shear capacity of the cross-section perpendicular to the x -axis
$V_{\mathrm{x}}{ }^{*}$	design shear force
$V_{\mathrm{y}}{ }^{*}$	design shear force
w_{h}	total hole width
x	major principal axis of the cross-section
x_{c}	co-ordinate of the centroid from the back of the web along the x -axis
x_{o}	co-ordinate of the shear centre from the centroid along the x -axis
y	minor principal axis of the cross-section
Z_{x}	elastic section modulus about the major principal x -axis
$z_{\mathrm{y} L}$	elastic section modulus about the minor principal y -axis (lips in compression)
z_{yw}	elastic section modulus about the minor principal y -axis (web in compression)
α_{T}	coefficient of thermal expamsion
β_{y}	monosymmetry section constant about the y -axis
ϕ_{b}	capacity reduction factor for bending
ϕ_{c}	capacity reduction factor for compression
ϕ_{t}	capacity reduction factor for tension
ϕ_{v}	capacity reduction factor for shear
ϕ_{w}	capacity reduction factor for bearing
v	Poisson's ratio (= 0.3 for steel)
ρ	density of steel

INTRODUCTION

Scope

These Design Capacity Tables have been prepared for the following nestable lipped channel cold-formed sections manufactured on Howick Ltd. steel roll-forming machines.

$$
\begin{aligned}
& 64 \times 41 \times 1.55 L C \\
& 64 \times 41 \times 1.15 L C \\
& 64 \times 41 \times 0.95 L C \\
& 64 \times 41 \times 0.75 L C
\end{aligned}
$$

The values presented in the tables and graphs are only applicable to sections manufactured on Howick Ltd. machines, and for the specified steel grades complying with AS 1397.

All of the dimensions and section properties required for design are provided, as well as design aids in the form of tables and graphs for members subject to the following design actions:

Bending

Axial Compression
Axial Tension
Combined Actions
These design aids will allow engineers to design most structures without having to refer to the design standard AS/NZS 4600.

Design Method

The Tables and Graphs in this publication have been calculated generally in accordance with the Australian and New Zealand standard AS/NZS 4600 Cold-Formed steel Structures. The Direct Strength Method (DSM) has been used to determine the capacities for axial compression and bending, based on the results of finite strip analyses using the computer program "Thin-Wall" from The University of Sydney.

Where appropriate, the method of calculating capacities in the transition region between local and distortional buckling in accordance with the AISI publication "Direct Strength Mothod" has been used. This is an extension of what is given in AS/NZS 4600.

Limit States Design

All values presented in these Design Capacity Tables are limit state values in accordance with the Limits State Design requirements of AS/NZS 4600 and AS/NZS 1170.0.

Units

The units in the Tables are consistent with those in the SI (metric) system. The base units used in the tables and graphs are:

Property	Units	Symbol
Force	Newton	N
Length	metre	m
Mass	kilogram	kg
Stress	Megapascal	MPa

Except for some minor exceptions, all values in the Tables are rounded to three (3) significant figures.

Properties of Steel

The properties of steel used for the calculation of capacities in these Tables are given in the table below. The coefficient of expansion for steel is also listed.

Property	Symbol	Value
Young's Modulus of Elasticity	E	$200 \times 10^{3} \mathrm{MPa}$
Shear Modulus	G	$80 \times 10^{3} \mathrm{MPa}$
Poisson's Ratio	v	0.3
Density	ρ	$7850 \mathrm{~kg} / \mathrm{m}^{3}$
Coefficient of Thermal Expansion	α_{T}	$11.7 \times 10^{-6} \mathrm{per}{ }^{\circ} \mathrm{C}$

The steel grades and mechanical properties used for design in accordance with AS/NZS 4600 are given in the table below. Note that the yield stress and tensile strength for thin sections of Grade G550 steel are reduced as required by this standard.

Section	Grade	Yield Stress $f_{y}(M P a)$	Tensile Strength $f_{u}(M P a)$
$64 \times 41 \times 1.55$ LC	G450	450	480
$64 \times 41 \times 1.15$ LC	G500	500	520
$64 \times 41 \times 0.95$ LC	G550	550	550
$64 \times 41 \times 0.75$ LC	G550	495	495

References

Referenced Standards
AS 1397-2011, Continuous hot-dip metallic coated steel sheet and strip - Coatings of zinc and zinc alloyed with aluminium and magnesium, Standards Australia

AS/NZS 1170.1: 2002, Structural Design Actions Part 0: General Principles, Standards
Australia.
AS/NZS 4600: 2018, Cold-Formed Steel Structures, Standards Australia.
Other References
AISI 2006, Direct Strength Method (DSM) Design Guide, American Iron and Steel Institute, January 2006.
Centre of Advanced Structural Engineering (CASE) 2001, "THIN-WALL", Computer Program.

CONTENTS

Part 1: Dimensions \& Section Properties

Table 1.1 Dimensions \& Section Properties
Table 1.2 Section Properties to Calculate Member Stability

Part 1:
 Dimensions \& Section Properties

Table 1.1

DIMENSIONS \& SECTION PROPERTIES

DIMENSIONS								SECTION PROPERTIES							
Designation	Depth d	Flange Width $b_{\text {f }}$	Lip Depth d_{L}	Thick. t	Inside Corner Radius r_{i}	$\begin{gathered} \text { Co-ord. } \\ \text { of } \\ \text { Centroid } \\ x_{\mathrm{c}} \end{gathered}$	Mass per metre	Gross Section Area A_{g}	About x-axis			About y-axis			
	mm	mm	mm	mm	mm	mm	kg/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mm
$64 \times 41 \times 1.55$ LC - G450	63.5	41.3	10.0	1.55	1.5	15.1	1.90	242	0.163	5.14	26.0	0.0556	2.12	3.68	15.2
$64 \times 41 \times 1.15$ LC - G500	63.5	41.3	10.0	1.15	1.5	15.1	1.43	182	0.124	3.91	26.2	0.0428	1.64	2.83	15.4
$64 \times 41 \times 0.95$ LC - G550	63.5	41.3	10.0	0.95	1.5	15.1	1.19	151	0.104	3.28	26.3	0.0360	1.38	2.38	15.4
$64 \times 41 \times 0.75$ LC - G550	63.5	41.3	10.0	0.75	1.5	15.1	0.941	120	0.0832	2.62	26.3	0.0290	1.11	1.91	15.5

NOTES:

1. Calculations of section properties are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).

Table 1.2

SECTION PROPERTIES TO CALCULATE MEMBER STABILITY

DIMENSIONS									RATIOS		PROPERTIES					MATERIAL		
Designation	Depth d	Flange Width b_{f}	Lip Depth d_{L}	Thickness t	Inside Corner Radius r_{i}	Flat Web Depth d_{1}	Flat Flange Width b	Mass per metre	Web d_{1} / t	Flange b/t	Shear Centre Co-ord. x_{0}	Polar Rad. of Gyration about S.C. r_{01}	MonoSymmetry Constant β_{y}	Torsion Constant J	Warping Constant I_{w}	Grade	Design Yield Stress f_{y}	Design Tensile Strength f_{u}
	mm	kg/m			mm	mm		mm ${ }^{4}$	$10^{6} \mathrm{~mm}^{6}$		MPa	MPa						
$64 \times 41 \times 1.55$ LC - G450	63.5	41.3	10.0	1.55	1.5	57.4	35.2	1.90	37.0	22.7	34.6	45.9	89.1	194	51.1	G450	450	480
$64 \times 41 \times 1.15$ LC - G500	63.5	41.3	10.0	1.15	1.5	58.2	36.0	1.43	50.6	31.3	35.1	46.4	90.0	80.1	39.9	G500	500	520
$64 \times 41 \times 0.95$ LC - G550	63.5	41.3	10.0	0.95	1.5	58.6	36.4	1.19	61.7	38.3	35.3	46.6	90.4	45.4	33.8	G550	550	550
$64 \times 41 \times 0.75$ LC - G550	63.5	41.3	10.0	0.75	1.5	59.0	36.8	0.941	78.7	49.1	35.6	46.9	90.9	22.5	27.4	G550	495	495

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
5. The flat flange width is the average of the flanges.

CONTENTS

Part 2: Members subject to Bending

Table 2.1: Bending Moment Capacity (x-axis)
Graph 2.1: Bending Moment Capacity (x -axis)
Table 2.2: \quad Bending Moment Capacity (y-axis Lips in compression)
Graph 2.2: Bending Moment Capacity (y-axis Lips in compression)
Table 2.3: Bending Moment Capacity (y-axis Web in compression)
Graph 2.3: Bending Moment Capacity (y-axis Web in compression)
Table 2.4: Shear capacities
Graph 2.4: Combined Bending \& Shear (bending about x-axis)
Graph 2.5: Combined Bending \& Shear (bending about y-axis lips in compression)
Graph 2.6: Combined Bending \& Shear (bending about y-axis web in compression)
Table 2.5: Bearing Capacity (One flange loading or reaction)
Table 2.6: \quad Bearing Capacity (Two flange loading or reaction)
Graph 2.7: Combined Bending \& Bearing (x-axis IOF $L_{b}=25 \mathrm{~mm}$)
Graph 2.8: Combined Bending \& Bearing (x-axis IOF $L_{b}=50 \mathrm{~mm}$)
Graph 2.9: Combined Bending \& Bearing (x-axis IOF $L_{b}=75 \mathrm{~mm}$)
Graph 2.10: Combined Bending \& Bearing (x-axis IOF $L_{b}=100 \mathrm{~mm}$)
Graph 2.11: Combined Bending \& Bearing (x-axis IOF $L_{b}=125 \mathrm{~mm}$)
Graph 2.12: Combined Bending \& Bearing (x-axis IOF $L_{b}=150 \mathrm{~mm}$)

Table 2.1

MEMBER MOMENT CAPACITY

Members without Full Lateral Restraint

bending about \mathbf{x}-axis

$C_{b}=1.0$

Designation	Mass per metre	Buckling Capacities		Design Member Moment Capacity, $\phi_{\mathrm{b}} M_{\mathrm{bx}}(\mathrm{kNm})$													
		Local $\phi_{b} M_{\mathrm{sx}}$	Distortional $\phi_{\mathrm{b}} M_{\mathrm{bdx}}$	Effective Length $\left(L_{\mathrm{e}}\right)$ in metres													
	kg/m	kNm	kNm	0.2	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3	3.3	3.6	4
$64 \times 41 \times 1.55$ LC - G450	1.90	2.08	1.92	2.01	1.92	1.92	1.92	1.73	1.45	1.13	0.879	0.714	0.598	0.514	0.450	0.400	0.348
$64 \times 41 \times 1.15$ LC - G500	1.43	1.71	1.39	1.64	1.39	1.39	1.39	1.39	1.10	0.806	0.614	0.489	0.402	0.340	0.293	0.257	0.220
$64 \times 41 \times 0.95$ LC - G550	1.19	1.34	1.14	1.34	1.15	1.14	1.14	1.12	0.918	0.656	0.495	0.390	0.318	0.266	0.227	0.198	0.168
$64 \times 41 \times 0.75$ LC - G550	0.941	0.853	0.775	0.853	0.814	0.775	0.775	0.730	0.619	0.492	0.384	0.300	0.242	0.200	0.170	0.146	0.122

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
5. Capacities are calculated for a uniform bending moment ($C_{b}=1.0$).
6. Refer to Graph 2.1 for the limits of the local and distortional design moment capacities.
7. The effective length $L_{e}=L_{e y}=L_{e z}$.

Graph 2.1

MEMBER MOMENT CAPACITY

Members without Full Lateral Restraint

bending about x -axis

$C_{b}=1.0$

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600
2. Thickness refers to the base metal thickness (BMT)
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
5. Capacities are calculated for a uniform bending moment ($C_{b}=1.0$)
6. The effective length $L_{e}=L_{e y}=L_{e z}$.

Table 2.2

MEMBER MOMENT CAPACITY

Members without Full Lateral Restraint
bending about y-axis
(Lips in Compression)
Compression

Tension
(Lips in Compression)

Designation	Mass per metre	Buckling Capacities		Design Member Moment Capacity, $\phi_{\mathrm{b}} M_{\text {byL }}(\mathrm{kNm})$													
		Local $\phi_{\mathrm{b}} M_{\mathrm{syL}}$	Distortional $\phi_{\mathrm{b}} M_{\text {bdyl }}$	Effective Length $\left(L_{e}\right)$ in metres													
	kg/m	kNm	kNm	0.2	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3	3.3	3.6	4
$64 \times 41 \times 1.55$ LC - G450	1.90	0.860	0.808	0.860	0.808	0.808	0.787	0.679	0.562	0.446	0.365	0.312	0.275	0.248	0.228	0.212	0.196
$64 \times 41 \times 1.15$ LC - G500	1.43	0.736	0.593	0.736	0.597	0.593	0.593	0.533	0.396	0.293	0.231	0.190	0.162	0.142	0.127	0.116	0.104
$64 \times 41 \times 0.95$ LC - G550	1.19	0.681	0.488	0.668	0.500	0.488	0.488	0.457	0.318	0.231	0.178	0.144	0.121	0.104	0.0917	0.0822	0.0726
$64 \times 41 \times 0.75$ LC - G550	0.941	0.490	0.332	0.490	0.360	0.332	0.332	0.332	0.246	0.176	0.133	0.106	0.0872	0.0737	0.0637	0.0561	0.0485

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
5. Capacities are calculated for $C_{s}=1.0$ and for a uniform bending moment ($C_{T F}=1.0$).
6. Refer to Graph 2.2 for the limits of the local and distortional design moment capacities.
7. The effective length $L_{e}=L_{e x}=L_{e z}$.

Graph 2.2

MEMBER MOMENT CAPACITY

Members without Full Lateral Restraint

Compression

bending about \mathbf{y}-axis

Tension
(Lips in Compression)

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600
2. Thickness refers to the base metal thickness (BMT)
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
5. Capacities are calculated for $C_{s}=1.0$ and for a uniform bending moment ($C_{T F}=1.0$).
6. The effective length $L_{e}=L_{e x}=L_{e z}$.

Table 2.3

MEMBER MOMENT CAPACITY

Members without Full Lateral Restraint

bending about y-axis
 (Web in Compresion)

Designation	Mass per metre	Buckling Capacities		Design Member Moment Capacity, $\phi_{\mathrm{b}} M_{\text {byw }}$ (kNm)													
		$\begin{aligned} & \text { Local } \\ & \phi_{b} M_{\text {syw }} \end{aligned}$	Distortional $\phi_{\mathrm{b}} M_{\mathrm{bdyw}}$	Effective Length $\left(L_{e}\right)$ in metres													
	kg/m	kNm	kNm	0.2	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3	3.3	3.6	4
$64 \times 41 \times 1.55$ LC - G450	1.90	0.860	N.A.	0.860	0.860	0.860	0.860	0.860	0.860	0.860	0.860	0.860	0.860	0.860	0.860	0.860	0.860
$64 \times 41 \times 1.15$ LC - G500	1.43	0.673	N.A.	0.673	0.673	0.673	0.673	0.673	0.673	0.673	0.673	0.673	0.673	0.673	0.673	0.673	0.673
$64 \times 41 \times 0.95$ LC - G550	1.19	0.529	N.A.	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529
$64 \times 41 \times 0.75$ LC - G550	0.941	0.337	N.A.	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337	0.337

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
5. Capacities are calculated for $C_{s}=1.0$ and for a uniform bending moment $\left(C_{T F}=1.0\right)$.
6. Refer to Graph 2.3 for the limits of the local and distortional design moment capacities.
7. The effective lengths $L_{e}=L_{e x}=L_{e z}$.

Graph 2.3

MEMBER MOMENT CAPACITY

Members without Full Lateral Restraint

bending about y-axis
 (Web in Compression)

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600
2. Thickness refers to the base metal thickness (BMT)
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
5. Capacities are calculated for $C_{s}=1.0$ and for a uniform bending moment ($C_{T F}=1.0$).
6. The effective length $L_{e}=L_{e x}=L_{e z}$.

Table 2.4

SHEAR CAPACITIES

Designation	Mass per metre	Shear Capacity x -axis $\phi_{v} V_{\mathrm{vx}}$			y -axis $\phi_{v} V_{\mathrm{vy}}$
	kN	kN			
$64 \times 41 \times 1.55$ LC - G450	1.90	23.1	28.3		
$64 \times 41 \times 1.15$ LC -G 500	1.43	17.6	23.8		
$64 \times 41 \times 0.95$ LC - G550	1.19	12.6	21.9		
$64 \times 41 \times 0.75$ LC - G550	0.941	6.22	14.9		

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600 .
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

Graph 2.4

COMBINED BENDING \& SHEAR

bending about x-axis

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

Graph 2.5

COMBINED BENDING \& SHEAR

bending about y-axis

(Lips in Compression)

Compression

Tension

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

Graph 2.6

COMBINED BENDING \& SHEAR

bending about y-axis
 (Web in Compression)

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

Table 2.5

WEB BEARING CAPACITY

One Flange Loading or Reaction

Designation	Mass per metre	$1.5 \mathrm{~d}_{1}$	Design Web Bearing Capacity, $\phi_{\mathrm{w}} R_{\mathrm{bx}}(\mathrm{kN})$											
			End Bearing ($\mathrm{c}<1.5 \mathrm{~d}_{1}$)						Interior Bearing ($c \geq 1.5 \mathrm{~d}_{1}$)					
			Bearing Length, $L_{\mathrm{b}}(\mathrm{mm})$						Bearing Length, $L_{\mathrm{b}}(\mathrm{mm})$					
	kg/m	mm	25	50	75	100	125	150	25	50	75	100	125	150
$64 \times 41 \times 1.55$ LC - G450	1.90	86.1	6.30	7.83	9.00	10.0	10.9	11.6	14.4	16.5	18.1	19.5	20.7	21.9
$64 \times 41 \times 1.15$ LC - G500	1.43	87.3	4.01	5.04	5.83	6.50	7.09	7.62	8.76	10.2	11.3	12.2	13.0	13.8
$64 \times 41 \times 0.95$ LC - G550	1.19	87.9	3.08	3.90	4.53	5.07	5.53	5.96	6.54	7.67	8.54	9.27	9.92	10.5
$64 \times 41 \times 0.75$ LC - G550	0.941	88.5	1.78	2.27	2.65	2.96	3.24	3.50	3.62	4.29	4.81	5.24	5.62	5.97

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

Table 2.6

WEB BEARING CAPACITY

Two Flange Loading or Reaction

End Bearing ($c<1.5 d_{1}$)
Interior Bearing ($c \geq 1.5 d_{1}$)

Designation	Mass per metre	$1.5 \mathrm{~d}_{1}$	Design Web Bearing Capacity, $\phi_{\mathrm{w}} R_{\mathrm{bx}}(\mathrm{kN})$											
			End Bearing ($c<1.5 \mathrm{~d}_{1}$)						Interior Bearing ($c \geq 1.5 \mathrm{~d}_{1}$)					
			Bearing Length, $L_{\mathrm{b}}(\mathrm{mm})$						Bearing Length, $L_{\mathrm{b}}(\mathrm{mm})$					
	kg/m	mm	25	50	75	100	125	150	25	50	75	100	125	150
$64 \times 41 \times 1.55$ LC - G450	1.90	86.1	7.87	8.42	8.84	9.19	9.50	9.78	16.1	18.7	20.6	22.2	23.7	24.9
$64 \times 41 \times 1.15$ LC - G500	1.43	87.3	4.33	4.67	4.93	5.15	5.34	5.52	8.70	10.2	11.3	12.3	13.1	13.9
$64 \times 41 \times 0.95$ LC - G550	1.19	87.9	2.99	3.25	3.44	3.60	3.75	3.88	5.80	6.84	7.64	8.32	8.92	9.45
$64 \times 41 \times 0.75$ LC - G550	0.941	88.5	1.48	1.62	1.73	1.82	1.89	1.96	2.62	3.12	3.51	3.83	4.12	4.38

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

Graph 2.7
COMBINED BENDING \& BEARING
bending about x-axis

Howick Ltd • 117 Vincent St Howick Auckland 2014 New Zealand • Telephone: +6495345569 • Internet: www.howickltd.com

Graph 2.8
COMBINED BENDING \& BEARING
bending about x-axis

INNOVATION... READY TO ROLL
Howick Ltd • 117 Vincent St Howick Auckland 2014 New Zealand • Telephone: +6495345569 • Internet: www.howickltd.com

Graph 2.9

COMBINED BENDING \& BEARING

bending about x-axis

CONTENTS

Part 3: Members subject to Axial Compression
Table 3.1: Axial Compression Capacity
Graph 3.1: Axial Compression Capacity

Part 3:
 Members subject to Axial Compression

Table 3.1

AXIAL COMPRESSION CAPACITY

$L_{\mathrm{ex}}=L_{\mathrm{ey}}=L_{\mathrm{ez}}$

Designation	Mass per metre	Buckling Capacities		Design Axial Compression Capacities, $\phi_{\mathrm{c}} N_{\mathrm{c}}(\mathrm{kN})$													
		Local $\phi_{c} N_{s}$	Distortional $\phi_{\mathrm{c}} N_{\mathrm{cd}}$	Effective Length $\left(L_{\mathrm{e}}\right)$ in metres													
	kg/m	kN	kN	0.2	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3	3.3	3.6	4
$64 \times 41 \times 1.55$ LC - G450	1.90	86.5	72.3	80.0	80.0	64.8	43.5	27.3	19.0	14.5	11.7	9.92	8.64	7.68	6.95	6.31	5.11
$64 \times 41 \times 1.15$ LC - G500	1.43	57.0	49.7	55.4	53.3	43.8	31.9	19.2	12.9	9.53	7.47	6.12	5.19	4.51	4.01	3.61	3.21
$64 \times 41 \times 0.95$ LC - G550	1.19	44.1	39.3	42.7	41.0	33.2	23.4	15.6	10.3	7.50	5.77	4.65	3.88	3.32	2.91	2.59	2.27
$64 \times 41 \times 0.75$ LC - G550	0.941	27.6	26.0	26.8	25.9	21.4	15.7	10.9	7.97	5.69	4.31	3.42	2.80	2.36	2.03	1.78	1.53

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
5. Refer to Graph 3.1 for the limits of the local and distortional design moment capacities.
6. The effective length $L_{e}=L_{e x}=L_{e y}=L_{e z}$

Graph 3.1

AXIAL COMPRESSION CAPACITY

$$
L_{\mathrm{ex}}=L_{\mathrm{ey}}=L_{\mathrm{ez}}
$$

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT)
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
5. The effective length $L_{e}=L_{e x}=L_{e y}=L_{e z}$.

CONTENTS

Part 4: Members subject to Axial Tension Table 4.1: Axial Tension Capacity

Part 4:
 Members subject to Axial Tension

Table 4.1

AXIAL TENSION CAPACITIES

with and without holes

Designation	Mass per metre	Design Axial Tension Capacity, $\phi_{\mathrm{t}} N_{\mathrm{t}}(\mathrm{kN})$														
		Uniform Tension	Web Connected							Both Flanges Connected						
			Total hole Width, w_{h} (m)							Total hole Width, $w_{\text {h }}(\mathrm{m})$						
	kg/m	(NO Holes)	0	10	20	25	30	35	40	0	10	20	25	30	35	40
$64 \times 41 \times 1.55$ LC - G450	1.90	97.9	75.5	70.6	65.8	63.4	61.0	58.5	56.1	75.5	70.6	65.8	63.4	61.0	58.5	56.1
$64 \times 41 \times 1.15$ LC - G500	1.43	81.7	61.4	57.5	53.6	51.7	49.7	47.8	45.9	61.4	57.5	53.6	51.7	49.7	47.8	45.9
$64 \times 41 \times 0.95$ LC - G550	1.19	74.7	54.0	50.6	47.2	45.5	43.8	42.1	40.4	54.0	50.6	47.2	45.5	43.8	42.1	40.4
$64 \times 41 \times 0.75$ LC - G550	0.941	53.4	38.6	36.2	33.8	32.6	31.4	30.1	28.9	38.6	36.2	33.8	32.6	31.4	30.1	28.9

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

CONTENTS

Part 5: Members subject to Combined Actions
Table 5.1: \quad Section \& Yield Capacities
Table 5.2: Elastic Buckling Load (x-axis)
Table 5.3: \quad Elastic Buckling Load (y-axis)

Part 5:
 Members subject to Combined Actions

DESIGN CAPACITY TABLES for 64×41 Lipped Channels to AS/NZS 4600

Table 5.1
SECTION \& YIELD CAPACITIES

Designation	Mass per m	Design Section Axial Capacities		Design Section Moment Capacities			Design Yield Moment Capacities (Tension)		
		Tension	Compression	$\begin{gathered} \text { about } x \text {-axis } \\ \phi_{b} M_{s x} \end{gathered}$	about y-axis		about x-axis$\phi_{b} M_{\mathrm{sxf}}$	about y -axis	
		$\phi_{\mathrm{t}} N_{\mathrm{t}}$	$\phi_{C} N_{s}$		$\phi_{b} M_{\text {syL }}$	$\phi_{b} M_{\text {syW }}$		$\phi_{b} M_{\text {syfL }}$	$\phi_{\mathrm{b}} M_{\text {syfW }}$
	kg / m	kN	kN	kNm	kNm	kNm	kNm	kNm	kNm
$64 \times 41 \times 1.55$ LC - G450	1.90	97.9	86.5	2.08	0.860	0.860	2.08	0.860	1.49
$64 \times 41 \times 1.15$ LC - G500	1.43	81.7	57.0	1.71	0.736	0.673	1.76	0.736	1.27
$64 \times 41 \times 0.95$ LC - G550	1.19	74.7	44.1	1.34	0.681	0.529	1.62	0.681	1.18
$64 \times 41 \times 0.75$ LC - G550	0.941	53.4	27.6	0.853	0.490	0.337	1.17	0.493	0.852

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
5. $\phi_{\mathrm{b}} M_{\text {syL }}$ and $\phi_{\mathrm{b}} M_{\text {syw }}$ refer to bending about the y-axis causing compression in the lips and web of the channel respectively.
6. $\phi_{b} M_{\text {syfL }}$ and $\phi_{b} M_{\text {syfw }}$ are the design yield moments for bending about the y-axis causing tension in the lips and web of the channel respectively.
7. Capacities are calculated for an equal flange lipped channel using the average flange width.

Table 5.2

ELASTIC BUCKLING LOAD

buckling about x-axis

Designation	Mass per metre	Elastic Buckling Load, $N_{\text {ex }}(\mathrm{kN})$													
		Effective Length, $L_{\text {ex }}(\mathrm{m})$													
	kg/m	0.6	1.2	1.5	1.8	2.1	2.4	2.7	3	3.3	3.6	4	4.5	5	6
$64 \times 41 \times 1.55$ LC - G450	1.90	895	224	143	99.4	73.0	55.9	44.2	35.8	29.6	24.9	20.1	15.9	12.9	8.95
$64 \times 41 \times 1.15$ LC - G500	1.43	681	170	109	75.7	55.6	42.6	33.7	27.3	22.5	18.9	15.3	12.1	9.81	6.81
$64 \times 41 \times 0.95$ LC - G550	1.19	570	143	91.3	63.4	46.6	35.6	28.2	22.8	18.9	15.8	12.8	10.1	8.21	5.70
$64 \times 41 \times 0.75$ LC - G550	0.941	456	114	73.0	50.7	37.2	28.5	22.5	18.2	15.1	12.7	10.3	8.11	6.57	4.56

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

Table 5.3

ELASTIC BUCKLING LOAD

buckling about y-axis

Designation	Mass per metre	Elastic Buckling Load, $N_{\text {ey }}(\mathrm{kN})$													
		Effective Length, $L_{\text {ey }}(\mathrm{m})$													
	kg/m	0.6	1.2	1.5	1.8	2.1	2.4	2.7	3.0	3.3	3.6	4.0	4.5	5.0	6.0
$64 \times 41 \times 1.55$ LC - G450	1.90	305	76.2	48.8	33.9	24.9	19.1	15.1	12.2	10.1	8.47	6.86	5.42	4.39	3.05
$64 \times 41 \times 1.15$ LC - G500	1.43	235	58.7	37.6	26.1	19.2	14.7	11.6	9.39	7.76	6.52	5.28	4.17	3.38	2.35
$64 \times 41 \times 0.95$ LC - G550	1.19	197	49.4	31.6	21.9	16.1	12.3	9.75	7.90	6.53	5.49	4.44	3.51	2.84	1.97
$64 \times 41 \times 0.75$ LC - G550	0.941	159	39.7	25.4	17.6	13.0	9.92	7.84	6.35	5.25	4.41	3.57	2.82	2.29	1.59

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

CONTENTS

Part 6: Members with Lips Removed

General
Table 6.1
Table 6.2
Table 6.3:
Table 6.4:
Graph 6.1: Combined Bending \& Shear (bending about y-axis)

GENERAL

When these lipped channel sections are used in frames and trusses, there will be instances where the lips of the sections are removed at the location of the connections. This part of the document provides design tables and graphs which will aid in the design of the unlipoped sections produced by removing the lips. The diagram below illustrates the portion of the section which is removed.

DESIGN CAPACITY TABLES for 64 x 41 Lipped Channels to AS/NZS 4600
Version 01 - June 2019 - Page 6-1

Howick Ltd • 117 Vincent St Howick Auckland 2014 New Zealand • Telephone: +6495345569 • Internet: www.howickltd.com

Table 6.1

DIMENSIONS \& SECTION PROPERTIES

Lips Removed

DIMENSIONS							SECTION PROPERTIES							
Designation	Depth d	Flange Width $b_{\text {f }}$	Thickness t	Inside Corner Radius r_{i}	Co-ord. of Centroid x_{c}	Mass per metre	Gross Section Area A_{g}	I_{x}	About x-axi Z_{x}	$r_{\text {x }}$	I_{y}	$Z_{y L}$	axis $Z_{y w}$	r_{y}
	mm	mm	mm	mm	mm	kg/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mm
$64 \times 41 \times 1.55$ LC-LR - G450	63.5	38.3	1.55	1.5	11.2	1.64	209	0.139	4.39	25.8	0.0317	1.17	2.84	12.3
$64 \times 41 \times 1.15$ LC-LR - G500	63.5	38.7	1.15	1.5	11.2	1.23	157	0.106	3.35	26.0	0.0246	0.897	2.20	12.5
$64 \times 41 \times 0.95$ LC-LR - G550	63.5	38.9	0.95	1.5	11.2	1.03	131	0.0891	2.81	26.1	0.0208	0.752	1.86	12.6
$64 \times 41 \times 0.75$ LC-LR - G550	63.5	39.1	0.75	1.5	11.2	0.815	104	0.0713	2.25	26.2	0.0168	0.603	1.50	12.7

NOTES:

1. Calculations of section properties are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).

Table 6.2

SECTION PROPERTIES TO CALCULATE MEMBER STABILITY

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

Table 6.3

SECTION \& YIELD CAPACITIES

Lips Removed

Designation	Mass per m	Design Section Axial Capacities		Design Section Moment Capacities			Design Yield Moment Capacities (Tension)		
		Tension	Compression	about x-axis$\phi_{b} M_{s x}$	about y -axis		about x-axis$\phi_{\mathrm{b}} M_{\mathrm{sxf}}$	about y -axis	
		$\phi_{t} N_{t}$	$\phi_{\mathrm{C}} N_{\mathrm{s}}$		$\phi_{b} M_{\text {syT }}$	$\phi_{\mathrm{b}} M_{\text {syW }}$		$\phi_{b} M_{\text {syfT }}$	$\phi_{b} M_{\text {syfW }}$
	kg / m	kN	kN	kNm	kNm	kNm	kNm	kNm	kNm
$64 \times 41 \times 1.55$ LC-LR - G450	1.64	84.7	55.8	1.32	0.397	0.475	1.78	0.475	1.15
$64 \times 41 \times 1.15$ LC-LR - G500	1.23	70.8	36.0	0.867	0.263	0.404	1.51	0.404	0.992
$64 \times 41 \times 0.95$ LC-LR - G550	1.03	64.7	27.5	0.668	0.204	0.328	1.39	0.372	0.922
$64 \times 41 \times 0.75$ LC-LR - G550	0.815	46.3	17.1	0.417	0.128	0.209	1.00	0.269	0.670

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
5. $\phi_{b} M_{\text {syT }}$ and $\phi_{b} M_{\text {syw }}$ refer to bending about the y-axis causing compression in the toes and web of the channel respectively
6. $\phi_{b} M_{\text {syft }}$ and $\phi_{b} M_{\text {syfW }}$ are the design yield moment capacities for bending about the y-axis causing tension in the toes and web of the channel respectively.
7. All section moment capacities are applicable for unrestrained lengths up to 400 mm . Lips removed for more than this length is not expected.
8. Capacities are calculated for an equal flange channel using the average flange width.

Table 6.4

Designation	Mass per metre kg / m	Design Axial Compression Capacity, $\phi_{c} N_{c}(\mathrm{kN})$					
		Effective Length $\left(L_{\mathrm{e}}\right)$ in metres					
		0.0	0.10	0.20	0.30	0.35	0.40
$64 \times 41 \times 1.55$ LC-LR - G450	1.64	55.8	55.3	53.8	51.5	50.1	48.5
$64 \times 41 \times 1.15$ LC-LR - G500	1.23	36.0	35.7	34.6	33.0	32.0	30.9
$64 \times 41 \times 0.95$ LC-LR - G550	1.03	27.5	27.2	26.4	25.1	24.2	23.3
$64 \times 41 \times 0.75$ LC-LR - G550	0.815	17.1	16.9	16.5	15.7	15.3	14.7

NOTES:

1. Calculations of section capacities are in accordance with AS/NZS 4600.
2. Thickness refers to the base metal thickness (BMT).
3. Steel grades are in accordance with AS 1397.
4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600.
5. Refer to Graph 3.1 for the limits of the local and distortional design moment capacities.
6. The effective length $L_{e}=L_{e x}=L_{e y}=L_{e z}$.

Graph 6.1

Toes in Compression

COMBINED BENDING \& SHEAR

bending about y-axis

Lips Removed

Web in Compression

CONTENTS

Part 7: Wall Framing Design Capacities

Table 7.1: \quad Wall stud Design Capacities - Unclad
Table 7.1: Wall stud Design Capacities - Clad Both Sides
Table 7.2: \quad Wall Plate Design Capacities

Part 7: Wall Framing Design Capacities

GENERAL

This part of the Design Capacity tables provide capacities which may be used for the design of the sections as wall studs and wall plates. Three typical wall heights are specified for the wall studs.

The NASH wall stud and plate classifications for both Australia and New Zealand are also included in the tables for each section. These are based on the minimum properties and capacities given in the NASH references.

DESIGN CAPACITY TABLES for 64 x 41 Lipped Channels to AS/NZS 4600
Version 01 - June 2019 - Page 6-7

Howick Ltd • 117 Vincent St Howick Auckland 2014 New Zealand • Telephone: +6495345569 • Internet: www.howickltd.com

Table 7.1

WALL STUD

 DESIGN CAPACITIESUnclad

Designation	Mass per metre kg / m	Design Properties and Capacities									NASH Wall Stud Classification	
		Lateral Actions				Co $\phi_{c} N_{s}$	Compression	Tension $\phi_{\mathrm{t}} N_{\mathrm{t}}$	Comb $\phi_{b} M_{\text {sxf }}$	cions $N_{\text {ex }}$		
		$10^{6} \mathrm{~mm}^{4}$	kNm	kNm	kN	kN	kN	kN	kNm	kN	Australia	New Zealand
Stud Height 2440 mm												
$64 \times 41 \times 1.55$ LC - G450	1.90	0.163	2.08	1.92	23.1	86.5	29.0	75.5	2.08	84.5	SC	SD
$64 \times 41 \times 1.15$ LC - G500	1.43	0.124	1.71	1.39	17.6	57.0	21.2	61.4	1.76	64.4	SC	SD
$64 \times 41 \times 0.95$ LC - G550	1.19	0.104	1.34	1.14	12.6	44.1	17.4	54.0	1.62	53.9	SC	SC
$64 \times 41 \times 0.75$ LC - G550	0.941	0.0832	0.853	0.775	6.22	27.6	11.8	38.6	1.17	43.1	SA	SB
Stud Height 2740 mm												
$64 \times 41 \times 1.55$ LC - G450	1.90	0.163	2.08	1.82	23.1	86.5	23.4	75.5	2.08	67.0	SC	SD
$64 \times 41 \times 1.15$ LC - G500	1.43	0.124	1.71	1.39	17.6	57.0	17.0	61.4	1.76	51.1	SC	SB
$64 \times 41 \times 0.95$ LC - G550	1.19	0.104	1.34	1.14	12.6	44.1	14.0	54.0	1.62	42.7	SB	SB
$64 \times 41 \times 0.75$ LC - G550	0.941	0.0832	0.853	0.762	6.22	27.6	10.2	38.6	1.17	34.2	SA	SB
Stud Height 3040 mm												
$64 \times 41 \times 1.55$ LC - G450	1.90	0.163	2.08	1.92	23.1	86.5	27.4	75.5	2.08	54.5	SC	SD
$64 \times 41 \times 1.15$ LC - G500	1.43	0.124	1.71	1.39	17.6	57.0	20.5	61.4	1.76	41.5	SC	SD
$64 \times 41 \times 0.95$ LC - G550	1.19	0.104	1.34	1.14	12.6	44.1	17.1	54.0	1.62	34.7	SC	SC
$64 \times 41 \times 0.75$ LC - G550	0.941	0.0832	0.853	0.775	6.22	27.6	11.7	38.6	1.17	27.8	SA	SC

Wall Stud Design Assumptions

Effective Lengths for Design			
Stud Height (mm)	2440	2740	3040
No. of Noggings	1	1	2
$L_{\mathrm{ex}}(\mathrm{mm})$	1952	2192	2432
$L_{\mathrm{ey}}(\mathrm{mm})$	976	1096	810
$L_{\mathrm{ez}}(\mathrm{mm})$	976	1096	810

NOTES:

1. Noggings are equally spaced.
2. Lateral restraint is assumed to be provided by noggings only. Additional lateral restraint provided by cladding is ignored.
3. Both flanges of the stud are restrained by the top and bottom plates and the noggings.
4. Effective lengths are taken as 80% of the distance between restraints in accordance with NASH Handbook Clause 3.4.2.
5. No allowance has been made for holes in the web of the stud.

Symbol	Description
I_{x}	second moment of area about the major principal x-axis
$\phi_{\mathrm{c}} N_{\mathrm{s}}$	design section capacity of a member in compression
$\phi_{\mathrm{c}} N_{\mathrm{c}}$	design member capacity of a member in compression
$\phi_{\mathrm{b}} M_{\mathrm{sx}}$	design section moment capacity about the x-axis
$\phi_{\mathrm{b}} M_{\mathrm{bx}}$	design member moment capacity about the x-axis
$\phi_{\mathrm{b}} M_{\mathrm{sxf}}$	design yield moment capacity about the x-axis
$\phi_{\mathrm{v}} V_{\mathrm{vx}}$	design shear capacity of the cross-section perpendicular to the x-axis
N_{ex}	elastic buckling load about the major principal x-axis
$\phi_{\mathrm{t}} N_{\mathrm{t}}$	design section capacity of a member in tension
L_{ex}	effective length for buckling about the major principal x-axis
L_{ey}	effective length for buckling about the minor principal y-axis
L_{ez}	effective length for torsional buckling about the longitudinal z-axis

References

AS/NZS 4600 Cold-Formed Steel Structures.
NASH Standard (NZ), Residential and Low-Rise Steel Framing, Part 1: Design Criteria. NASH Standard (Aust.), Residential and Low-Rise Steel Framing, Part 2: Design Solutions.
NASH Handbook (Aust.), Best Practice for Design and Construction of Residential and LowRise Steel Framing, Chapter 3.

Table 7.2

WALL STUD

 DESIGN CAPACITIESClad Both Sides

Designation	Mass per metre kg / m	Design Properties and Capacities									NASH Wall Stud Classification	
		Lateral Actions				Compression		Tension $\phi_{\mathrm{t}} N_{\mathrm{t}}$	Comb $\phi_{b} M_{\text {sxf }}$	cions $N_{\text {ex }}$		
		$10^{6} \mathrm{~mm}^{4}$	kNm	kNm	kN	kN	kN	kN	kNm	kN	Australia	New Zealand
Stud Height 2440 mm												
$64 \times 41 \times 1.55$ LC - G450	1.90	0.163	2.08	1.92	23.1	86.5	43.0	75.5	2.08	84.5	SC	SD
$64 \times 41 \times 1.15$ LC - G500	1.43	0.124	1.71	1.39	17.6	57.0	32.3	61.4	1.76	64.4	SC	SD
$64 \times 41 \times 0.95$ LC - G550	1.19	0.104	1.34	1.14	12.6	44.1	24.0	54.0	1.62	53.9	SC	SC
$64 \times 41 \times 0.75$ LC - G550	0.941	0.0832	0.853	0.775	6.22	27.6	16.1	38.6	1.17	43.1	SA	SB
Stud Height 2740 mm												
$64 \times 41 \times 1.55$ LC - G450	1.90	0.163	2.08	1.92	23.1	86.5	37.7	75.5	2.08	67.0	SC	SD
$64 \times 41 \times 1.15$ LC - G500	1.43	0.124	1.71	1.39	17.6	57.0	28.6	61.4	1.76	51.1	SC	SD
$64 \times 41 \times 0.95$ LC - G550	1.19	0.104	1.34	1.14	12.6	44.1	21.5	54.0	1.62	42.7	SC	SC
$64 \times 41 \times 0.75$ LC - G550	0.941	0.0832	0.853	0.775	6.22	27.6	14.7	38.6	1.17	34.2	SA	SB
Stud Height 3040 mm												
$64 \times 41 \times 1.55$ LC - G450	1.90	0.163	2.08	1.92	23.1	86.5	32.4	75.5	2.08	54.5	SC	SD
$64 \times 41 \times 1.15$ LC - G500	1.43	0.124	1.71	1.39	17.6	57.0	24.5	61.4	1.76	41.5	SC	SD
$64 \times 41 \times 0.95$ LC - G550	1.19	0.104	1.34	1.14	12.6	44.1	19.4	54.0	1.62	34.7	SC	SC
$64 \times 41 \times 0.75$ LC - G550	0.941	0.0832	0.853	0.775	6.22	27.6	13.2	38.6	1.17	27.8	SA	SB

Wall Stud Design Assumptions

Effective Lengths for Design			
Stud Height (mm)	2440	2740	3040
No. of Noggings	1	1	2
$L_{\mathrm{ex}}(\mathrm{mm})$	1952	2192	2432
$L_{\mathrm{ey}}(\mathrm{mm})$	600	600	600
$L_{\mathrm{ez}}(\mathrm{mm})$	600	600	600

NOTES:

1. Noggings are equally spaced.
2. Lateral restraint is assumed to be provided the cladding.
3. Both flanges of the stud are restrained by the top and bottom plates, the nogging, and the cladding
4. Effective length L_{ex} is taken as 80% of the ength of the stud in accordance with NASH Handbook Clause 3.4.2.
5. Effective lengths $L_{e y}$ and $L_{e z}$ are assumed to be as per the table above.
6. No allowance has been made for holes in the web of the stud.

Symbol	Description
I_{x}	second moment of area about the major principal x-axis
$\phi_{\mathrm{c}} N_{\mathrm{s}}$	design section capacity of a member in compression
$\phi_{\mathrm{c}} N_{\mathrm{c}}$	design member capacity of a member in compression
$\phi_{\mathrm{b}} M_{\mathrm{sx}}$	design section moment capacity about the x-axis
$\phi_{\mathrm{b}} M_{\mathrm{bx}}$	design member moment capacity about the x-axis
$\phi_{\mathrm{b}} M_{\mathrm{sxf}}$	design yield moment capacity about the x-axis
$\phi_{\mathrm{v}} V_{\mathrm{vx}}$	design shear capacity of the cross-section perpendicular to the x-axis
N_{ex}	elastic buckling load about the major principal x-axis
$\phi_{\mathrm{t}} N_{\mathrm{t}}$	design section capacity of a member in tension
L_{ex}	effective length for buckling about the major principal x-axis
L_{ey}	effective length for buckling about the minor principal y-axis
L_{ez}	effective length for torsional buckling about the longitudinal z-axis

References

AS/NZS 4600 Cold-Formed Steel Structures.
NASH Standard (NZ), Residential and Low-Rise Steel Framing, Part 1: Design Criteria. NASH Standard (Aust.), Residential and Low-Rise Steel Framing, Part 2: Design Solutions.
NASH Handbook (Aust.), Best Practice for Design and Construction of Residential and LowRise Steel Framing, Chapter 3.

Table 7.3

WALL PLATE DESIGN CAPACITIES

Designation	Mass per metre	Design Properties and Capacities								NASH Wall Plate Classification	
		Full Lipped Channel (at midspan)				Channel Lips Removed (at supports)					
		I_{y}	$\phi_{\mathrm{c}} N_{\mathrm{c}}$	$\phi_{\mathrm{b}} M_{\text {byL }}$	$\phi_{\mathrm{b}} M_{\text {byw }}$	$\phi_{C} N_{s}$	$\phi_{b} M_{\text {sy }}$	$\phi_{\mathrm{b}} M_{\text {syw }}$	$\phi_{v} V_{v y}$		
	kg/m	$10^{6} \mathrm{~mm}^{4}$	kN	kNm	kNm	kN	kNm	kNm	kN	Australia	New Zealand
$64 \times 41 \times 1.55$ LC - G450	1.90	0.0556	64.8	0.808	0.860	55.8	0.397	0.475	28.3	PC	PE
$64 \times 41 \times 1.15$ LC - G500	1.43	0.0428	43.8	0.593	0.673	36.0	0.263	0.404	23.8	PC	PD
$64 \times 41 \times 0.95$ LC - G550	1.19	0.0360	33.2	0.488	0.529	27.5	0.204	0.328	21.9	PB	PC
$64 \times 41 \times 0.75$ LC - G550	0.941	0.0290	21.4	0.332	0.337	17.1	0.128	0.209	14.9	PA	PB

NOTES:

1. The capacities for the full lipped channels are based on an effective length $L_{e}=0.6 \mathrm{~m}$.
2. The capacities of channels with lips removed are section capacities.
3. No allowance has been made for holes in the web of the plate in the determination of l_{y}
4. The NASH Classifications are based on the capacities of the full lipped channels.
5. The second moment of area I_{y} for the full lipped channel is used for the NASH Australia classification.

Symbol	Description
I_{y}	second moment of area about the minor principal y-axis
$\phi_{\mathrm{c}} N_{\mathrm{s}}$	design section capacity of a member in compression
$\phi_{\mathrm{c}} N_{\mathrm{c}}$	design member capacity of a member in compression
$\phi_{\mathrm{b}} M_{\mathrm{byL}}$	design section moment capacity about the y-axis (lips in compression)
$\phi_{\mathrm{b}} M_{\mathrm{byw}}$	design member moment capacity about the y-axis (web in compression)
$\phi_{\mathrm{b}} M_{\text {syT }}$	design section moment capacity about the y-axis (toes in compression)
$\phi_{\mathrm{b}} M_{\text {syw }}$	design section moment capacity about the y-axis (web in compression
$\phi_{\mathrm{v}} V_{\mathrm{vy}}$	design shear capacity of the cross-section perpendicular to the y-axis
L_{e}	effective length $\left(L_{\mathrm{ex}}=L_{\mathrm{ey}}=L_{\mathrm{ez}}\right)$

CONTENTS

Appendix A: SIGNATURE CURVES

Appendix A: Signature Curves

General
Graph A.1: $100 \times 50 \times 1.55$ LC - Axial Compression
Graph A.2: $100 \times 50 \times 1.55$ LC - Bending about x-axis
Graph A.3: $\quad 100 \times 50 \times 1.55$ LC - Bending about y-axis (Lips in Compression)
Graph A.4: $100 \times 50 \times 1.55$ LC - Bending about y -axis (Web in Compression)
Graph A.5: $\quad 100 \times 50 \times 1.15$ LC - Axial Compression
Graph A.6: $100 \times 50 \times 1.15$ LC - Bending about x-axis
Graph A.7: $100 \times 50 \times 1.15$ LC - Bending about y-axis (Lips in Compression)
Graph A.8: $100 \times 50 \times 1.15$ LC - Bending about y-axis (Web in Compression)
Graph A.9: $100 \times 50 \times 0.95$ LC - Axial Compression
Graph A.10: $100 \times 50 \times 0.95$ LC - Bending about x-axis
Graph A.11: $100 \times 50 \times 0.95$ LC - Bending about y-axis (Lips in Compression)
Graph A.12: $100 \times 50 \times 0.95$ LC - Bending about y-axis (Web in Compression)
Graph A.13: $100 \times 50 \times 0.75$ LC - Axial Compression
Graph A. 14: $100 \times 50 \times 0.75$ LC - Bending about x-axis
Graph A.15: $100 \times 50 \times 0.75$ LC - Bending about y-axis (Lips in Compression)
Graph A.16: $100 \times 50 \times 0.75$ LC - Bending about y-axis (Web in Compression

GENERAL

This appendix provides the signature curves for each of the sections contained in these Design Capacity Tables. The signature curves were produced in the Thin-Wall buckling analysis program developed by The University of Sydney, and form the basis of design using the Direct Strength Method (DSM). They are included here to provide a clear picture of the buckling behaviour of the sections under the following loading conditions:
axial compression
bending about the x-axis
bending about the y-axis (lips in compression)
bending about the y-axis (web in compression)

DESIGN CAPACITY TABLES for 64×41 Lipped Channels to AS/NZS 4600

Graph A. 1

SIGNATURE CURVE

$64 \times 41 \times 1.55$ LC
Axial Compression

Graph A. 2
SIGNATURE CURVE
$64 \times 41 \times 1.55$ LC
Bending about x-axis

Graph A. 3

Graph A. 4

Bending about y-axis
(Web in Compression)

Graph A. 5

Graph A. 6 SIGNATURE CURVE $64 \times 41 \times 1.15$ LC Bending about x-axis

Graph A. 7

SIGNATURE CURVE

$64 \times 41 \times 1.15$ LC
Bending about y-axis
(Lips in Compression)

Graph A. 8 SIGNATURE CURVE
$64 \times 41 \times 1.15$ LC
Bending about y-axis (Web in Compresssion)

Graph A. 9

Graph A. 10
SIGNATURE CURVE
$64 \times 41 \times 0.95$ LC
Bending about x-axis

Graph A. 11

Graph A. 13

SIGNATURE CURVE

$64 \times 41 \times 0.75$ LC
Axial Compression

Graph A. 14
SIGNATURE CURVE
$64 \times 41 \times 0.75$ LC
Bending about x-axis

Graph A. 15

Graph A. 16
SIGNATURE CURVE
$64 \times 41 \times 0.75$ LC
Bending about y-axis (Web in Compression)

HOWICK INNOVATION... READY TO ROLL

Howick Ltd
117 Vincent St Howick Auckland 2014 New Zealand
Telephone: +64 945345569
Internet: www.howickltd.com

