

DESIGN CAPACITY TABLES

for

150 x 45 Lipped Channels

to

AS/NZS 4600

Version 02 January 2019

www.howickltd.com

Howick Ltd

Design Capacity Tables for 150 x 45 Lipped Channels to AS/NZS 4600

Published by Howick Ltd 117 Vincent St

Howick

Auckland 2014

New Zealand

Email: info@howickltd.com Internet: www.howickltd.com

© Howick Ltd

Version 02 - January 2019

Contact Details

All enquires should be directed to:

Howick Ltd 117 Vincent St Howick Auckland 2014 New Zealand

Email: info@howickltd.com Internet: www.howickltd.com

DISCLAIMER:

Whilst every care has been taken in the preparation of this information, Howick Ltd, and its agents, accept no liability for the accuracy of the information supplied. To the extent permitted by law, Howick Ltd excludes any and all liability in any way, no matter how arising, to any person which may arise out of, in connection with, or as a consequence of, the accuracy or correctness of the information provided or a person relying on some or all of the information provided in this publication.

WARNING:

This publication should not be used without the services of a competent professional with suitable knowledge in the relevant field, and under no circumstances should this publication be relied upon to replace any or all of the knowledge and expertise of that person.

RELEVANCE OF INFORMATION CONTAINED IN THIS PUBLICATION:

Users of this publication should note that the design capacities, calculations, tabulations and other information contained in this publication are specifically relevant to cold-formed steel sections manufactured on Howick roll-forming machines.

Consequently, the information contained in this publication cannot be readily used for cold-formed sections produced on machines by other manufacturers, as those sections may vary significantly in geometry and material Standard compliance.

Contents

About Howick Ltd Engineer Certification Notations & Abbreviations Introduction

Scope

Design Method

Limit States Design

Units

Properties of Steel

References

Part 1: Dimensions and Section Properties

Part 2: Members subject to Bending

Part 3 Members subject to Axial Compression

Part 4: Members subject to Axial Tension

Part 5: Members subject to Combined Actions

Part 6: Members with Lips Removed

Appendix A: Signature Curves

About Howick Ltd

Howick Ltd is a well-established and respected, 35 year, family enterprise based in Auckland, New Zealand.

Howick Ltd personifies the concept of "Kiwi ingenuity" showcasing technical experties and creativity and that essential "can do" philosophy that underpins the company's world-leading innovation and quality. Given this success, Howick Ltd is often described as producers of "the world's best steel framing machines".

We are a design and manufacturing company with a global philosophy and reach. Our emphasis is on unique research and development and sophisticated design technology enabling cost-effective, efficient end to end construction systems, across a variety of steel framed projects.

Engineer Certification

+61 7 3392 3671

www.edgece.com

Suite 2, 33a Logan Road Woolloongabba QLD 4102 Australia

09/01/2019

Howick Ltd

117 Vincent Street, Howick Auckland, New Zealand 2014

RE: DESIGN CAPACITY TABLES for 150 x 45 Lipped Channel to AS/NZS 4600:2018 Version 02 January 2019

Att: Nick Coubray,

As requested, Engineering Design Global Enterprise (EDGE Consulting Engineers), has undertaken a peer review of the documentation provided by Howick Ltd for the 150 \times 45 Lipped Channel Sections as manufactured by Howick LTD. EDGE has been provided with the following documents:

- "Howick 150 x 45 LC DCT [2] 2018-12-11" and associated calculations.
- "150x45 LC Properties & Capacities v07.xlsx"
- "150x45 LC Lips Removed Properties & Capacities v09.xlsx"

These documents have been technically reviewed against the relevant standards.

The design capacity tables provided have been compared to the results within the reviewed spreadsheets and calculations and reviewed in accordance with AS/NZS 4600:2018. All calculations and capacity tables comply with AS/NZS 4600:2018.

Yours faithfully,

Tim Peters

BEng Meng MIEAust CPEng 67334 RBP RPEQ 5496 MIPENZ MIEPNG © Howick Ltd

Registered as Engineering Design Global Enterprise Pty Ltd (ABN: 15 610 150 957)

Notations & Abbreviations

Symbol	Description
$A_{\rm g}$	gross area of a cross-section
b	flat width of a flange excluding radii
₽ _f	overall width of a flange
C _b	bending coefficient dependent on moment
Cs	coefficient for moment about the cnetroidal axis perpendicular to the symmetry axis
C _{TF}	coefficient for unequal end moment
С	distance from the end of a beam to the edge of the bearing force
d	overall depth of a section
<i>d</i> ₁	depth of the flat portion of a web measured along the plane of the web
d_{L}	overall depth of a lip
Ε	Young's modulus of elasticity
EOF	End One Flange (concentrated load or reaction on a beam)
ETF	End Two Flange (concentrated load or reaction on a beam)
f _u	minimum tensile strength used in design
f_{y}	minimum yield stress used in design
G	shear modulus of elasticity
I_{w}	warping constant for a cross-section
I _x	second moment of area about the major principal x-axis
l _y	second moment of area about the minor principal y-axis
IOF	Interior One Flange (concentrated load or reaction on a beam)
ITF	Interior Two Flange (concentrated load or reaction on a beam)
J	torsion constant for the cross-section
L_{b}	actual length of bearing
L _e	effective length of a member
L _{ex}	effective length for buckling about the major principal x-axis
L _{ey}	effective length for buckling about the minor principal y-axis
L _{ez}	effective length for torsional buckling about the longitudinal z-axis
M*	design bending moment

Symbol	Description
M _x *	design bending moment about the x-axis
M _y *	design bending moment about the y-axis
M _b	nominal member moment capacity
$M_{ m bdx}$	nominal moment capacity about the x-axis for distortional buckling
$M_{ m bdyL}$	nominal moment capacity about the y-axis for distortional buckling (lips in compression)
$M_{ m bdyW}$	nominal moment capacity about the y-axis for distortional buckling (web in compression)
M _{bx}	nominal member moment capacity about the x-axis
M _{by}	nominal member moment capacity about the y-axis
$M_{ m byL}$	nominal member moment capacity about the y-axis (lips in compression)
$M_{ m byW}$	nominal member moment capacity about the y-axis (web in compression)
M _{sx}	nominal section moment capacity about the x-axis
M _{sxf}	nominal yield moment capacity about the x-axis
M _{syfL}	nominal yield moment capacity about the y-axis (tension in the lips)
$M_{ m syfT}$	nominal yield moment capacity about the y-axis (tension in the toes)
$M_{ m syfW}$	nominal yield moment capacity about the y-axis (tension in the web)
M _{syL}	nominal section moment capacity about the y-axis (lips in compression)
M _{syT}	nominal section moment capacity about the y-axis (toes in compression)
$M_{ m syW}$	nominal section moment capacity about the y-axis (web in compression)
M _y	moment causing initial yield at the extreme compression fibre of a full section
N*	design axial force (tension or compression)
N _c	nominal member capacity of a member in compression
N _{cd}	nominal capacity of a member in compression for distortional buckling
N _{ex}	elastic buckling load about the major principal x-axis
N _{ey}	elastic buckling load about the minor principal y-axis
N _s	nominal section capacity of a member in compression
N _t	nominal section capacity of a member in tension

Symbol	Description
r _i	inside corner radius
r _{o1}	polar radius of gyration of the cross-section about the shear centre
r _x	radius of gyration about the major principal x-axis
r _y	radius of gyration about the minor principal y-axis
t	nominal base metal thickness of a section exclusive of coatings
$V_{ m vx}$	nominal shear capacity of the cross-section perpendicular to the x-axis
$V_{ m vy}$	nominal shear capacity of the cross-section perpendicular to the x-axis
<i>V</i> _x *	design shear force
V _y *	design shear force
w_{h}	total hole width
X	major principal axis of the cross-section
X _C	co-ordinate of the centroid from the back of the web along the x-axis
X _o	co-ordinate of the shear centre from the centroid along the x-axis
У	minor principal axis of the cross-section
Z_{x}	elastic section modulus about the major principal x-axis
$Z_{ m yL}$	elastic section modulus about the minor principal y-axis (lips in compression)
Z_{yW}	elastic section modulus about the minor principal y-axis (web in compression)
α_{T}	coefficient of thermal expamsion
β_{y}	monosymmetry section constant about the y-axis
фь	capacity reduction factor for bending
фс	capacity reduction factor for compression
φt	capacity reduction factor for tension
φ _V	capacity reduction factor for shear
φ _w	capacity reduction factor for bearing
ν	Poisson's ratio (= 0.3 for steel)
ρ	density of steel

INTRODUCTION

Scope

These Design Capacity Tables have been prepared for the following nestable lipped channel cold-formed sections manufactured on Howick Ltd. steel roll-forming machines.

150 x 45 x 1.55 LC 150 x 45 x 1.15 LC 150 x 45 x 0.95 LC 150 x 45 x 0.75 LC

The values presented in the tables and graphs are only applicable to sections manufactured on Howick Ltd. machines, and for the specified steel grades complying with AS 1397.

All of the dimensions and section properties required for design are provided, as well as design aids in the form of tables and graphs for members subject to the following design actions:

Bending
Axial Compression
Axial Tension
Combined Actions

These design aids will allow engineers to design most structures without having to refer to the design standard AS/NZS 4600.

Design Method

The Tables and Graphs in this publication have been calculated generally in accordance with the Australian and New Zealand standard AS/NZS 4600 Cold-Formed steel Structures. The Direct Strength Method (DSM) has been used to determine the capacities for axial compression and bending, based on the results of finite strip analyses using the computer program "Thin-Wall" from The University of Sydney.

Where appropriate, the method of calculating capacities in the transition region between local and distortional buckling in accordance with the AISI publication "Direct Strength Mothod" has been used. This is an extension of what is given in AS/NZS 4600.

Limit States Design

All values presented in these Design Capacity Tables are limit state values in accordance with the Limits State Design requirements of AS/NZS 4600 and AS/NZS 1170.0.

Units

The units in the Tables are consistent with those in the SI (metric) system. The base units used in the tables and graphs are:

Property	Units	Symbol
Force	Newton	N
Length	metre	m
Mass	kilogram	kg
Stress	Megapascal	MPa

Except for some minor exceptions, all values in the Tables are rounded to three (3) significant figures.

Properties of Steel

The properties of steel used for the calculation of capacities in these Tables are given in the table below. The coefficient of expansion for steel is also listed.

Property	Symbol	Value
Young's Modulus of Elasticity	Е	200 x 10 ³ MPa
Shear Modulus	G	80 x 10 ³ MPa
Poisson's Ratio	ν	0.3
Density	ρ	7850 kg/m ³
Coefficient of Thermal Expansion	α_{T}	11.7 x 10 ⁻⁶ per °C

The steel grades and mechanical properties used for design in accordance with AS/NZS 4600 are given in the table below. Note that the yield stress and tensile strength for thin sections of Grade G550 steel are reduced as required by this standard.

Section	Grade	Yield Stress f _y (MPa)	Tensile Strength $f_{\rm u}$ (MPa)
150 x 45 x 1.55 LC	G450	450	480
150 x 45 x 1.15 LC	G500	500	520
150 x 45 x 0.95 LC	G550	550	550
150 x 45 x 0.75 LC	G550	495	495

References

Referenced Standards

AS 1397-2011, Continuous hot-dip metallic coated steel sheet and strip - Coatings of zinc and zinc alloyed with aluminium and magnesium, Standards Australia

AS/NZS 1170.1: 2002, Structural Design Actions Part 0: General Principles, Standards Australia.

AS/NZS 4600: 2018, Cold-Formed Steel Structures, Standards Australia.

Other References

AISI 2006, Direct Strength Method (DSM) Design Guide, American Iron and Steel Institute, January 2006.

Centre of Advanced Structural Engineering (CASE) 2001, "THIN-WALL," Computer Program.

CONTENTS

Part 1: Dimensions & Section Properties

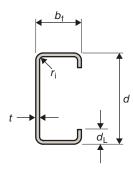

Table 1.1 Dimensions & Section Properties

Table 1.2 Section Properties to Calculate Member Stability

Part 1: Dimensions & Section Properties

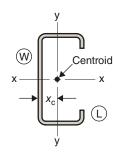
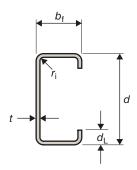

wick Ltd

Table 1.1

DIMENSIONS & SECTION PROPERTIES



		DIMEN	ISIONS					SECTION PROPERTIES								
Designation	Depth	Flange Width	Lip Depth	Thick.	Inside Corner Radius	Co-ord. of Centroid	Mass per metre	Gross Section Area		About x-axis			About	y-axis		
	d	<i>b</i> _f	d_{L}	t	r _i	X _C	1110110	A_{g}	I _x	Z_{x}	r_{x}	ly	Z_{yL}	Z_{yW}	r_{y}	
	mm	mm	mm	mm	mm	mm	kg/m	mm²	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴	10 ³ mm ³	10 ³ mm ³	mm	
150 x 45 x 1.55 LC - G450	150.0	45.0	10.0	1.55	1.50	11.2	3.04	387	1.27	16.9	57.3	0.0910	2.69	8.12	15.3	
150 x 45 x 1.15 LC - G500	150.0	45.0	10.0	1.15	1.50	11.2	2.27	290	0.957	12.8	57.5	0.0698	2.06	6.24	15.5	
150 x 45 x 0.95 LC - G550	150.0	45.0	10.0	0.95	1.50	11.2	1.89	240	0.797	10.6	57.6	0.0586	1.73	5.25	15.6	
150 x 45 x 0.75 LC - G550	150.0	45.0	10.0	0.75	1.50	11.2	1.49	190	0.634	8.46	57.7	0.0470	1.39	4.21	15.7	

NOTES:

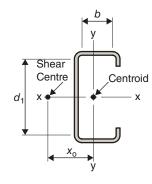

- 1. Calculations of section properties are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).

Table 1.2

SECTION PROPERTIES TO CALCULATE MEMBER STABILITY

	DIMENSIONS									IOS		PR	OPERTIE	S		MATERIAL		
Designation	Depth	Flange Width	Lip Depth	Thick- ness	Inside Corner Radius	Flat Web Depth	Flat Flange Width	Mass per metre	Web	Flange	Shear Centre Co-ord.	Polar Rad. of Gyration about S.C.	Mono- Symmetry Constant	Torsion Constant	Warping Constant	Grade	Design Yield Stress	Design Tensile Strength
	d	b_{f}	d_{L}	t	r_{i}	d ₁	b	mono	d ₁ /t	b/t	x _o	r _{o1}	β_{y}	J	I_{W}		f _y	f_{u}
	mm	mm	mm	mm	mm	mm	mm	kg/m			mm	mm		mm ⁴	10 ⁶ mm ⁶		MPa	MPa
150 x 45 x 1.55 LC - G450	150.0	45.0	10.0	1.55	1.50	143.9	38.9	3.04	92.8	25.1	28.2	65.6	162	310	399	G450	450	480
150 x 45 x 1.15 LC - G500	150.0	45.0	10.0	1.15	1.50	144.7	39.7	2.27	126	34.5	28.6	66.1	162	128	307	G500	500	520
150 x 45 x 0.95 LC - G550	150.0	45.0	10.0	0.95	1.50	145.1	40.1	1.89	153	42.2	28.8	66.3	162	72.3	259	G550	550	550
150 x 45 x 0.75 LC - G550	150.0	45.0	10.0	0.75	1.50	145.5	40.5	1.49	194	54.0	29.0	66.5	162	35.7	208	G550	495	495

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
- 5. The flat flange width is the average of the flanges.

Part 2: MEMBERS SUBJECT TO BENDING

CONTENTS

Part 2: Members subject to Bending

Table 2.1: Bending Moment Capacity (x-axis)
Graph 2.1: Bending Moment Capacity (x-axis)
Table 2.2: Bending Moment Capacity (y-axis Lips in compression)
Graph 2.2: Bending Moment Capacity (y-axis Lips in compression)
Table 2.3: Bending Moment Capacity (y-axis Web in compression)

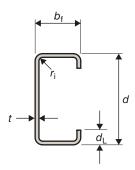
Graph 2.3: Bending Moment Capacity (y-axis Web in compression)
Table 2.4: Shear capacities

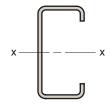
Graph 2.4: Combined Bending & Shear (bending about x-axis)

Graph 2.5: Combined Bending & Shear (bending about y-axis lips in compression)
Graph 2.6: Combined Bending & Shear (bending about y-axis web in compression)

Table 2.5: Bearing Capacity (One flange loading or reaction)
Table 2.6: Bearing Capacity (Two flange loading or reaction)
Graph 2.7: Combined Bending & Bearing (x-axis IOF $L_b = 25$ mm)
Graph 2.8: Combined Bending & Bearing (x-axis IOF $L_b = 50$ mm)
Graph 2.10: Combined Bending & Bearing (x-axis IOF $L_b = 75$ mm)
Graph 2.11: Combined Bending & Bearing (x-axis IOF $L_b = 100$ mm)
Graph 2.12: Combined Bending & Bearing (x-axis IOF $L_b = 125$ mm)
Graph 2.12: Combined Bending & Bearing (x-axis IOF $L_b = 150$ mm)

wick Ltd



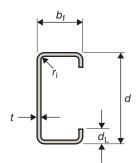

Table 2.1

MEMBER MOMENT CAPACITY

Members without Full Lateral Restraint

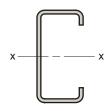
bending about x-axis

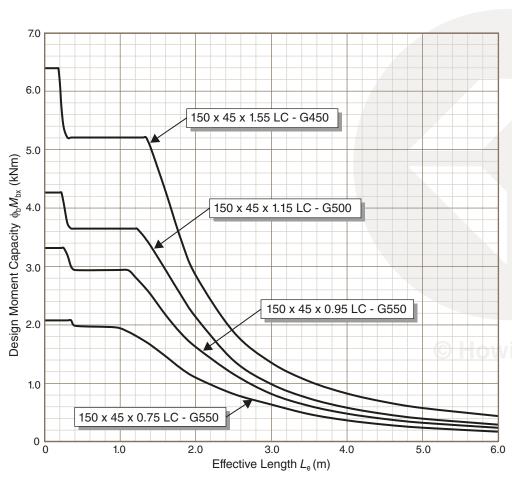
$$C_{\rm b} = 1.0$$



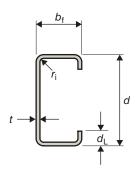
	Mass	Buckling	Capacities Design Member Moment Capacity, $\phi_{b} \mathit{M}_{bx}$ (kNm)														
Designation	per	Local	Distortional														
Designation	metre	$\phi_{b} M_{sx}$	$\phi_{b} M_{bdx}$	Effective Length (L _e) in metres													
	kg/m	kNm	kNm	0.6	1.2	1.5	1.8	2.1	2.4	2.7	3	3.3	3.6	4	4.5	5	6
150 x 45 x 1.55 LC - G450	3.04	6.40	5.21	5.21	5.21	4.67	3.47	2.59	2.02	1.63	1.35	1.14	0.980	0.821	0.677	0.573	0.434
150 x 45 x 1.15 LC - G500	2.27	4.26	3.65	3.65	3.65	3.15	2.51	1.93	1.50	1.20	0.981	0.822	0.701	0.579	0.471	0.392	0.290
150 x 45 x 0.95 LC - G550	1.89	3.31	2.93	2.93	2.81	2.34	1.85	1.51	1.24	0.987	0.807	0.673	0.572	0.470	0.379	0.313	0.228
150 x 45 x 0.75 LC - G550	1.49	2.08	1.96	1.96	1.82	1.57	1.26	1.03	0.863	0.738	0.636	0.529	0.448	0.366	0.293	0.241	0.173

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
- 5. Capacities are calculated for a uniform bending moment ($C_b = 1.0$).
- 6. Refer to Graph 2.1 for the limits of the local and distortional design moment capacities.
- 7. The effective length $L_e = L_{ev} = L_{ez}$.


Graph 2.1


MEMBER MOMENT CAPACITY

Members without Full Lateral Restraint


bending about x-axis

$$C_{\rm b} = 1.0$$

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
- 5. Capacities are calculated for a uniform bending moment ($C_b = 1.0$).
- 6. The effective length $L_e = L_{ey} = L_{ez}$.

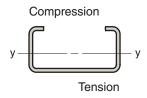
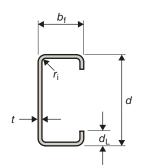


Table 2.2

MEMBER MOMENT CAPACITY

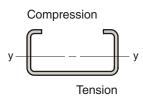
Members without Full Lateral Restraint bending about y-axis

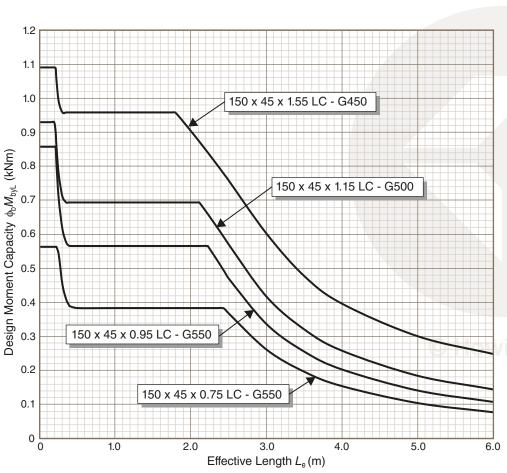
(Lips in Compression)



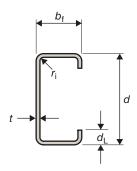
	Mass	Buckling (Capacities Design Member Moment Capacity, $\phi_b M_{byL}$ (kNm)														
Designation	per	Local	Distortional														
Designation	metre	$\phi_{b} oldsymbol{M}_{syL}$	$\phi_{b} M_{bdyL}$	Effective Length (L _e) in metres													
	kg/m	kNm	kNm	0.6	1.2	1.5	1.8	2.1	2.4	2.7	3	3.3	3.6	4	4.5	5	6
150 x 45 x 1.55 LC - G450	3.04	1.09	0.958	0.958	0.958	0.958	0.958	0.883	0.798	0.708	0.616	0.532	0.469	0.405	0.348	0.307	0.253
150 x 45 x 1.15 LC - G500	2.27	0.929	0.693	0.693	0.693	0.693	0.693	0.693	0.612	0.512	0.425	0.361	0.312	0.263	0.220	0.188	0.148
150 x 45 x 0.95 LC - G550	1.89	0.858	0.566	0.566	0.566	0.566	0.566	0.566	0.514	0.416	0.343	0.289	0.247	0.206	0.170	0.143	0.109
150 x 45 x 0.75 LC - G550	1.49	0.563	0.383	0.383	0.383	0.383	0.383	0.383	0.383	0.324	0.265	0.222	0.189	0.156	0.127	0.105	0.0779

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
- 5. Capacities are calculated for $C_s = 1.0$ and for a uniform bending moment ($C_{TF} = 1.0$).
- 6. Refer to Graph 2.2 for the limits of the local and distortional design moment capacities.
- 7. The effective length $L_e = L_{ex} = L_{ez}$.


Graph 2.2


MEMBER MOMENT CAPACITY

Members without Full Lateral Restraint


bending about y-axis

(Lips in Compression)

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
- 5. Capacities are calculated for $C_s = 1.0$ and for a uniform bending moment ($C_{TF} = 1.0$).
- 6. The effective length $L_e = L_{ex} = L_{ex}$.

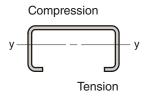


Table 2.3

MEMBER MOMENT CAPACITY

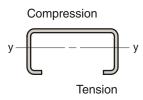
Members without Full Lateral Restraint bending about y-axis

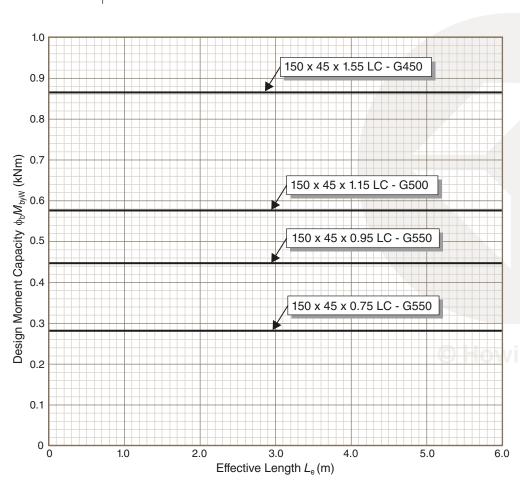
(Web in Compresion)

	Mass	Buckling (Buckling Capacities Design Member Moment Capacity, $\phi_b M_{byW}$ (kNm)														
Designation	per	Local	Distortional														
Designation	metre	$\phi_{b} M_{syW}$	$\phi_{b} M_{bdyW}$	Effective Length (L _e) in metres													
	kg/m	kNm	kNm	0.6	1.2	1.5	1.8	2.1	2.4	2.7	3	3.3	3.6	4	4.5	5	6
150 x 45 x 1.55 LC - G450	3.04	0.850	N.A.	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850	0.850
150 x 45 x 1.15 LC - G500	2.27	0.567	N.A.	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567	0.567
150 x 45 x 0.95 LC - G550	1.89	0.442	N.A.	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442
150 x 45 x 0.75 LC - G550	1.49	0.279	N.A.	0.279	0.279	0.279	0.279	0.279	0.279	0.279	0.279	0.279	0.279	0.279	0.279	0.279	0.279

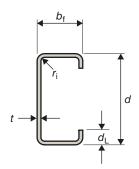
- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
- 5. Capacities are calculated for $C_s = 1.0$ and for a uniform bending moment ($C_{TF} = 1.0$).
- 6. Refer to Graph 2.3 for the limits of the local and distortional design moment capacities.
- 7. The effective lengths $L_e = L_{ex} = L_{ez}$.

$t \rightarrow b_{f}$ d d

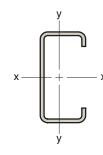

Graph 2.3


MEMBER MOMENT CAPACITY

Members without Full Lateral Restraint


bending about y-axis

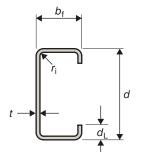
(Web in Compression)



- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
- 5. Capacities are calculated for $C_s = 1.0$ and for a uniform bending moment ($C_{TF} = 1.0$).
- 6. The effective length $L_e = L_{ex} = L_{ez}$.

Table 2.4

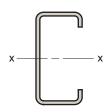
SHEAR CAPACITIES

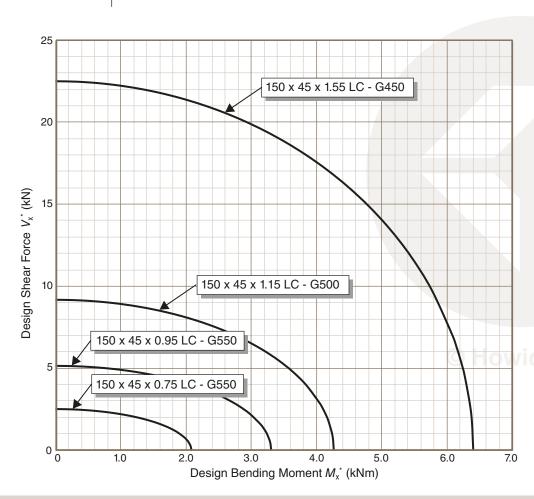


	Mass	Shear Capacity							
Designation	per	x-axis	y-axis						
	metre	$\phi_{v} V_{vx}$	$\phi_{v} V_{vy}$						
	kg/m	kN	kN						
150 x 45 x 1.55 LC - G450	3.04	22.5	31.3						
150 x 45 x 1.15 LC - G500	2.27	9.14	26.3						
150 x 45 x 0.95 LC - G550	1.89	5.14	24.1						
150 x 45 x 0.75 LC - G550	1.49	2.52	14.9						

NOTES:

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.



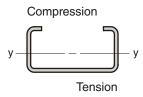


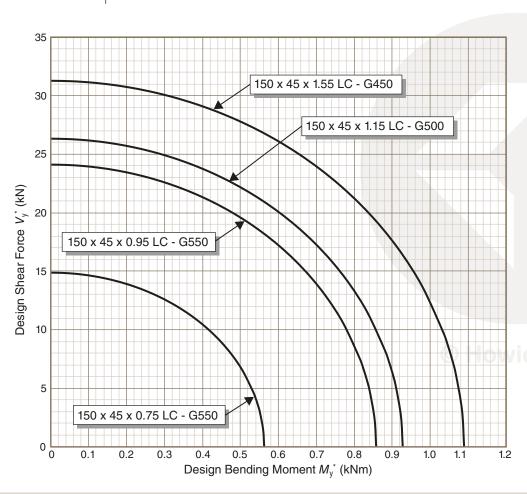
Graph 2.4

COMBINED BENDING & SHEAR

bending about x-axis

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.


$t \rightarrow \begin{bmatrix} b_f \\ r_i \end{bmatrix} d$

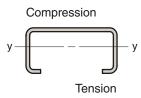

Graph 2.5

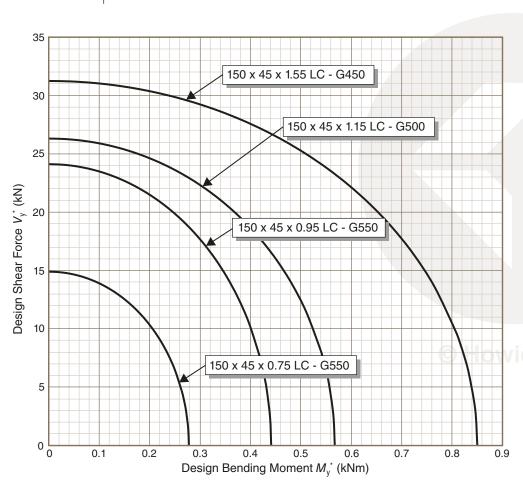
COMBINED BENDING & SHEAR

bending about y-axis

(Lips in Compression)

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.


$t \rightarrow \begin{bmatrix} b_f \\ r_i \end{bmatrix} d$


Graph 2.6

COMBINED BENDING & SHEAR

bending about y-axis

(Web in Compression)

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

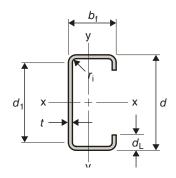
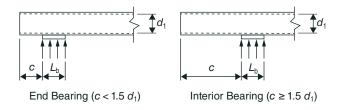



Table 2.5

WEB BEARING CAPACITY

One Flange Loading or Reaction

Designation	Mass	s	Design Web Bearing Capacity, $\phi_{w}R_{\mathrm{bx}}$ (kN)													
	per	1.5 d ₁		End Bearing (c < 1.5 d ₁)						Interior Bearing (c ≥ 1.5 d ₁)						
metre			Bearing Length, L _b (mm)							Bearing Length, L _b (mm)						
	kg/m	mm	25	50	75	100	125	150	25	50	75	100	125	150		
150 x 45 x 1.55 LC - G450	3.04	216	5.79	7.20	8.27	9.18	9.98	10.7	13.8	15.9	17.5	18.8	20.0	21.0		
150 x 45 x 1.15 LC - G500	2.27	217	3.63	4.56	5.28	5.88	6.41	6.89	8.37	9.74	10.8	11.7	12.5	13.2		
150 x 45 x 0.95 LC - G550	1.89	218	2.75	3.49	4.05	4.52	4.94	5.32	6.22	7.29	8.12	8.82	9.43	9.99		
150 x 45 x 0.75 LC - G550	1.49	218	1.56	1.99	2.32	2.60	2.84	3.07	3.42	4.05	4.54	4.95	5.31	5.64		

NOTES:

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

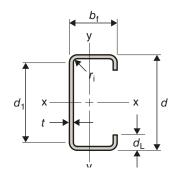
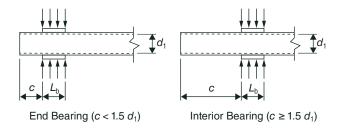



Table 2.6

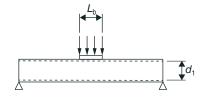
WEB BEARING CAPACITY

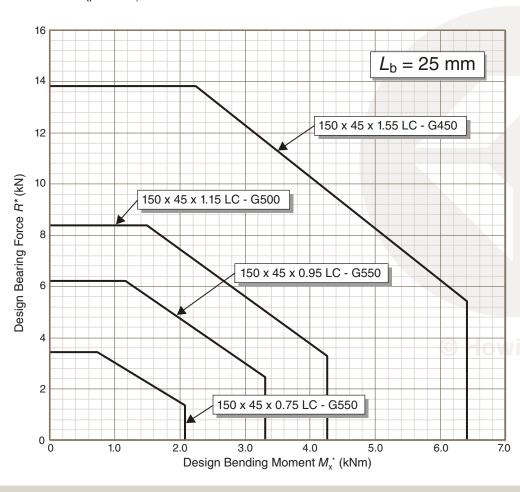
Two Flange Loading or Reaction

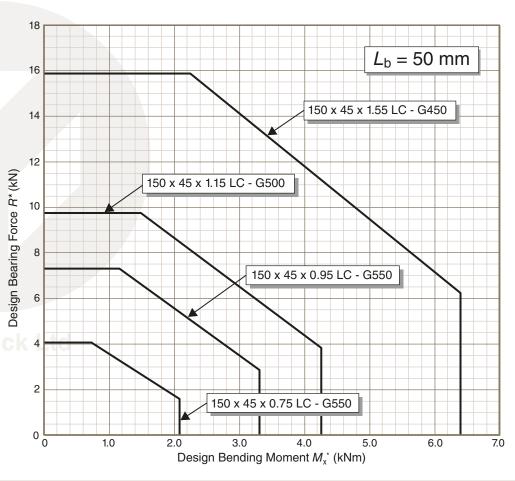
Designation	Mass		Design Web Bearing Capacity, $\phi_w R_{bx}$ (kN)											
	per metre	1.5 d ₁		End Bearing (c < 1.5 d ₁)						Interior Bearing (c ≥ 1.5 d ₁)				
Designation			Bearing Length, L _b (mm)						Bearing Length, L _b (mm)					
	kg/m	mm	25	50	75	100	125	150	25	50	75	100	125	150
150 x 45 x 1.55 LC - G450	3.04	216	6.40	6.84	7.18	7.47	7.72	7.95	16.1	18.6	20.5	22.1	23.6	24.9
150 x 45 x 1.15 LC - G500	2.27	217	3.34	3.60	3.80	3.97	4.12	4.25	8.66	10.1	11.3	12.2	13.1	13.8
150 x 45 x 0.95 LC - G550	1.89	218	2.21	2.39	2.54	2.66	2.76	2.86	5.77	6.81	7.61	8.28	8.88	9.41
150 x 45 x 0.75 LC - G550	1.49	218	1.02	1.11	1.18	1.25	1.30	1.35	2.60	3.10	3.49	3.81	4.10	4.35

NOTES:

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

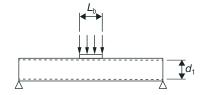


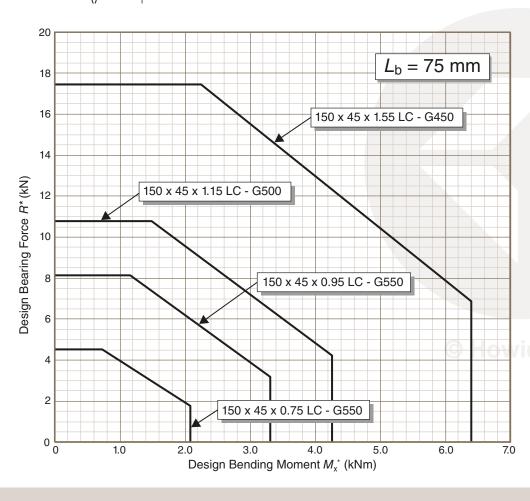

$\begin{array}{c|c} b_{f} \\ y \\ \hline \\ t \\ \hline \\ d_{L} \\ \end{array}$

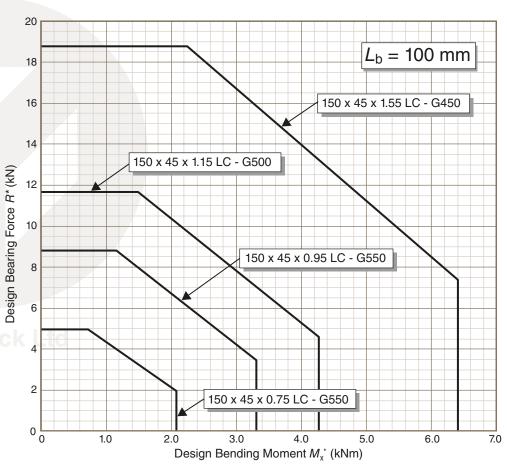

Graph 2.7

COMBINED BENDING & BEARING

bending about x-axis

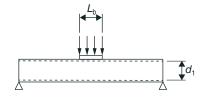


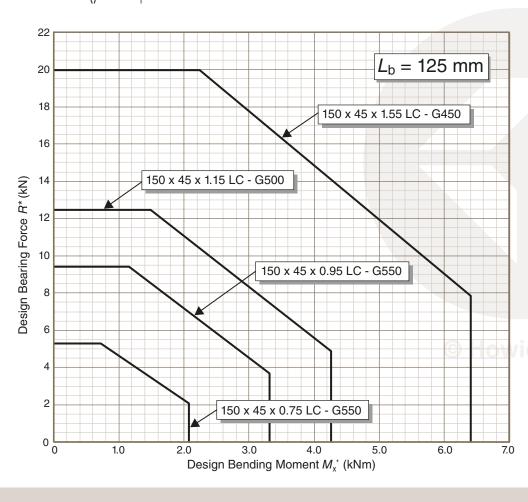

$\begin{array}{c|c} D_f \\ y \\ \end{array}$

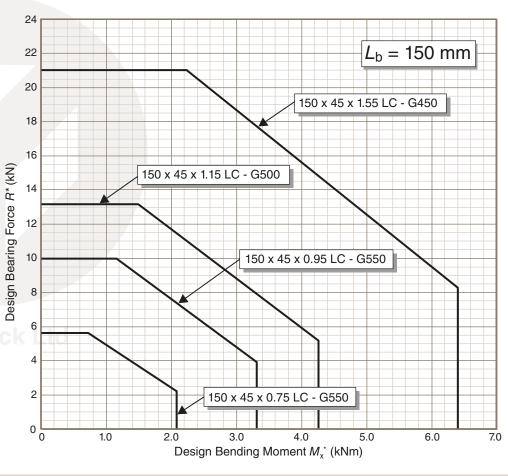

Graph 2.8

COMBINED BENDING & BEARING

bending about x-axis






Graph 2.9

COMBINED BENDING & BEARING

bending about x-axis

CONTENTS

Part 3: Members subject to Axial Compression

Table 3.1: Axial Compression Capacity Graph 3.1: Axial Compression Capacity

Part 3: Members subject to Axial Compression

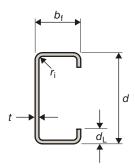
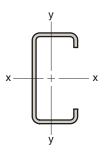
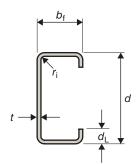



Table 3.1

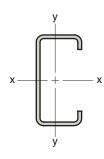
AXIAL COMPRESSION CAPACITY

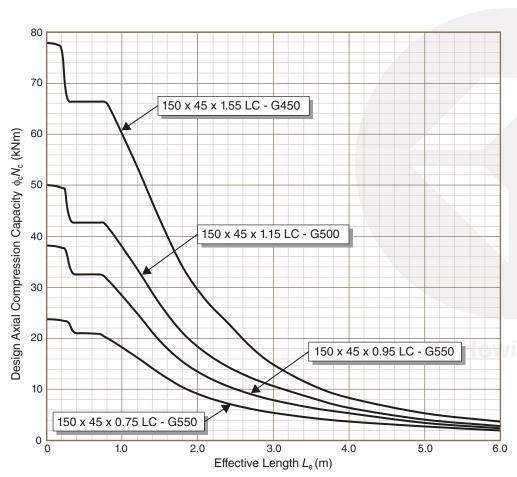
$$L_{\text{ex}} = L_{\text{ey}} = L_{\text{ez}}$$



Designation	Mass	Buckling (Buckling Capacities Design Axial Compression Capacities, ϕ_{c}							_c N _c (kN)							
	per	Local	Distortional														
Designation	metre	$\phi_{\rm c}N_{\rm s}$	$\phi_{\rm c} N_{\rm cd}$		Effective Length ($L_{\rm e}$) in metres												
	kg/m	kN	kN	0.6	1.2	1.5	1.8	2.1	2.4	2.7	3	3.3	3.6	4	4.5	5	6
150 x 45 x 1.55 LC - G450	3.04	78.0	66.4	66.4	53.5	43.2	33.9	27.6	23.0	18.4	14.9	12.3	10.3	8.37	6.61	5.35	3.72
150 x 45 x 1.15 LC - G500	2.27	50.1	42.7	42.7	33.6	26.7	21.1	17.2	14.4	12.3	10.7	9.38	7.92	6.42	5.07	4.11	2.85
150 x 45 x 0.95 LC - G550	1.89	38.2	32.5	32.5	24.8	19.4	15.4	12.6	10.6	9.08	7.89	6.95	6.17	5.34	4.26	3.45	2.40
150 x 45 x 0.75 LC - G550	1.49	23.7	21.0	21.0	16.2	13.0	10.4	8.52	7.18	6.16	5.37	4.74	4.22	3.67	3.13	2.71	1.92

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
- 5. Refer to Graph 3.1 for the limits of the local and distortional design moment capacities.
- 6. The effective length $L_e = L_{ex} = L_{ey} = L_{ez}$.





Graph 3.1

AXIAL COMPRESSION CAPACITY

$$L_{\rm ex} = L_{\rm ey} = L_{\rm ez}$$

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
- 5. The effective length $L_e = L_{ex} = L_{ey} = L_{ez}$.

CONTENTS

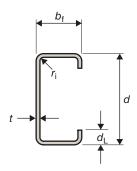

Part 4: Members subject to Axial Tension

Table 4.1: Axial Tension Capacity

Part 4: Members subject to Axial Tension

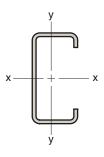


Table 4.1

AXIAL TENSION CAPACITIES

with and without holes

Designation	Mass	Design Axial Tension Capacity, $\phi_t N_t$ (kN)														
	Ullalloll metre	Uniform	Web Connected							Both Flanges Connected						
Designation		Tension		Total hole Width, w _h (m)							Total hole Width, w _h (m)					
	kg/m	(NO Holes)	0	10	20	25	30	35	40	0	10	20	25	30	35	40
150 x 45 x 1.55 LC - G450	3.04	157	121	116	111	109	106	104	102	121	116	111	109	106	104	102
150 x 45 x 1.15 LC - G500	2.27	130	97.9	94.0	90.1	88.2	86.3	84.3	82.4	97.9	94.0	90.1	88.2	86.3	84.3	82.4
150 x 45 x 0.95 LC - G550	1.89	119	85.9	82.5	79.1	77.4	75.7	74.0	72.3	85.9	82.5	79.1	77.4	75.7	74.0	72.3
150 x 45 x 0.75 LC - G550	1.49	84.8	61.3	58.9	56.4	55.2	54.0	52.8	51.6	61.3	58.9	56.4	55.2	54.0	52.8	51.6

NOTES:

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

CONTENTS

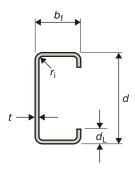
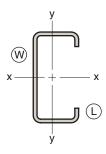
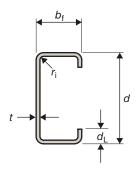

Part 5: Members subject to Combined Actions

Table 5.1: Section & Yield Capacities
Table 5.2: Elastic Buckling Load (x-axis)
Table 5.3: Elastic Buckling Load (y-axis)


Part 5: Members subject to Combined Actions


Table 5.1 SECTION & YIELD CAPACITIES

	Mass	Design Section	Axial Capacities	Design S	Section Moment C	Capacities	Design Yield Moment Capacities (Tension)			
Designation		Tension Compression		about x-axis	about	y-axis	about x-axis	about y-axis		
Designation	per m	$\phi_t N_t$	$\phi_{c} \mathcal{N}_{s}$	$\phi_b M_{sx}$	$\phi_{b} M_{syL}$	$\phi_{b} M_{syW}$	$\phi_{b} M_{sxf}$	$\phi_{b} M_{syfL}$	$\phi_{b} M_{syfW}$	
	kg/m	kN	kN	kNm	kNm	kNm	kNm	kNm	kNm	
150 x 45 x 1.55 LC - G450	3.04	157	78.0	6.40	1.09	0.850	6.86	1.09	3.29	
150 x 45 x 1.15 LC - G500	2.27	130	50.1	4.26	0.929	0.567	5.74	0.929	2.81	
150 x 45 x 0.95 LC - G550	1.89	119	38.2	3.31	0.858	0.442	5.26	0.858	2.60	
150 x 45 x 0.75 LC - G550	1.49	84.8	23.7	2.08	0.563	0.279	3.77	0.619	1.88	

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
- 5. $\phi_b M_{syL}$ and $\phi_b M_{syW}$ refer to bending about the y-axis causing compression in the lips and web of the channel respectively.
- 6. $\phi_b M_{syfL}$ and $\phi_b M_{syfW}$ are the design yield moments for bending about the y-axis causing tension in the lips and web of the channel respectively.
- 7. Capacities are calculated for an equal flange lipped channel using the average flange width.

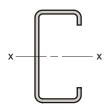
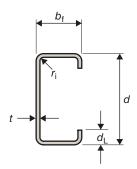


Table 5.2

ELASTIC BUCKLING LOAD

buckling about x-axis


	Mass per						Elast	ic Bucklin	g Load, <i>N</i> ∈	x (kN)					
Designation	metre							Effective Le	ength, L _{ex} (m)						
	kg/m	0.6	1.2	1.5	1.8	2.1	2.4	2.7	3	3.3	3.6	4	4.5	5	6
150 x 45 x 1.55 LC - G450	3.04	6963	1741	1114	774	568	435	344	279	230	193	157	124	100	69.6
150 x 45 x 1.15 LC - G500	2.27	5250	1312	840	583	429	328	259	210	174	146	118	93.3	75.6	52.5
150 x 45 x 0.95 LC - G550	1.89	4371	1093	699	486	357	273	216	175	145	121	98.4	77.7	62.9	43.7
150 x 45 x 0.75 LC - G550	1.49	3478	870	557	386	284	217	172	139	115	96.6	78.3	61.8	50.1	34.8

NOTES:

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

© Howick Ltd

Table 5.3

ELASTIC BUCKLING LOAD

buckling about y-axis

	Mass per						Elast	ic Bucklin	g Load, <i>N</i> e	y (kN)					
Designation	metre							Effective Le	ength, L _{ey} (m)						
	kg/m	0.6	1.2	1.5	1.8	2.1	2.4	2.7	3.0	3.3	3.6	4.0	4.5	5.0	6.0
150 x 45 x 1.55 LC - G450	3.04	499	125	79.8	55.4	40.7	31.2	24.6	20.0	16.5	13.9	11.2	8.87	7.18	4.99
150 x 45 x 1.15 LC - G500	2.27	383	95.7	61.2	42.5	31.2	23.9	18.9	15.3	12.6	10.6	8.61	6.80	5.51	3.83
150 x 45 x 0.95 LC - G550	1.89	321	80.3	51.4	35.7	26.2	20.1	15.9	12.9	10.6	8.93	7.23	5.71	4.63	3.21
150 x 45 x 0.75 LC - G550	1.49	258	64.5	41.3	28.7	21.1	16.1	12.7	10.3	8.53	7.16	5.80	4.59	3.71	2.58

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.

Part 6: MEMBERS with LIPS REMOVED

CONTENTS

Part 6: Members with Lips Removed

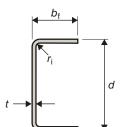
General

Table 6.1 Dimensions & Section Properties

Table 6.2 Section Properties to Calculate Member Stability

Table 6.3: Section & Yield Capacities
Table 6.4: Axial Compression Capacity

Graph 6.1: Combined Bending & Shear (bending about y-axis)


GENERAL

When these lipped channel sections are used in frames and trusses, there will be instances where the lips of the sections are removed at the location of the connections. This part of the document provides design tables and graphs which will aid in the design of the unlipoped sections produced by removing the lips. The diagram below illustrates the portion of the section which is removed.

wick Ltd

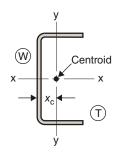
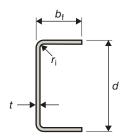


Table 6.1

DIMENSIONS & SECTION PROPERTIES

Lips Removed


	[DIMENSI	ONS				SECTION PROPERTIES								
Designation	Depth	Depth Flange Thickness Co Width Ra		Inside Corner Radius	Co-ord. of Centroid	Mass per metre	Gross Section Area		About x-axis			About	y-axis		
	d	b_{f}	t	r _i	X _c		A_{g}	I _x	Z_{x}	r_{x}	I_{y}	$Z_{ m yL}$	Z_{yW}	r_{y}	
	mm	mm	mm	mm	mm	kg/m	mm²	10 ⁶ mm ⁴	10 ³ mm ³	mm	10 ⁶ mm ⁴	10 ³ mm ³	10 ³ mm ³	mm	
150 x 45 x 1.55 LC-LR - G450	150.0	42.0	1.55	1.50	8.18	2.78	355	1.11	14.8	55.9	0.0527	1.56	6.44	12.2	
150 x 45 x 1.15 LC-LR - G500	150.0	42.4	1.15	1.50	8.14	2.08	265	0.837	11.2	56.2	0.0407	1.19	5.00	12.4	
150 x 45 x 0.95 LC-LR - G550	150.0	42.6	0.95	1.50	8.12	1.73	220	0.697	9.30	56.3	0.0343	0.997	4.22	12.5	
150 x 45 x 0.75 LC-LR - G550	150.0	42.8	0.75	1.50	8.10	1.37	174	0.555	7.40	56.4	0.0276	0.798	3.41	12.6	

NOTES:

- 1. Calculations of section properties are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).

© Howick Ltd

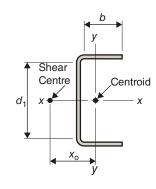
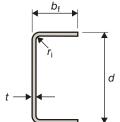


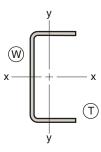
Table 6.2

SECTION PROPERTIES TO CALCULATE MEMBER STABILITY

Lips Removed

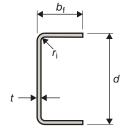

		DIMENS	SIONS					RATIOS PROPERTIES					MATERIAL				
Designation	Depth	Flange Width	Thick- ness	Inside Corner Radius	Flat Web Depth	Flat Flange Width	Mass per metre	Web	Flange	Shear Centre Co-ord.	Polar Rad. of Gyration about S.C.	Mono- Symmetry Constant	Torsion Constant	Warping Constant	Grade	Design Yield Stress	Design Tensile Strength
	d	<i>b</i> _f	t	r_{i}	d ₁	b		d ₁ /t	b/t	x _o	r _{o1}	β_{y}	J	I_{w}		f_{y}	f_{u}
	mm	mm	mm	mm	mm	mm	kg/m			mm	mm		mm ⁴	10 ⁶ mm ⁶		MPa	MPa
150 x 45 x 1.55 LC-LR - G500	150.0	42.0	1.55	1.50	143.9	38.9	2.78	92.8	25.1	20.2	60.7	175	284.1	211.2	G500	500	520
150 x 45 x 1.15 LC-LR - G550	150.0	42.4	1.15	1.50	144.7	39.7	2.08	125.8	34.5	20.6	61.1	175	116.9	163.9	G550	550	550
150 x 45 x 0.95 LC-LR - G550	150.0	42.6	0.95	1.50	145.1	40.1	1.726	153	42.2	20.8	61.3	175	66.2	138.4	G550	495	495
150 x 45 x 0.75 LC-LR - G550	150.0	42.8	0.75	1.50	145.5	40.5	1.368	194	54.0	21.0	61.5	175	32.7	111.7	G550	495	495

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.



SECTION & YIELD CAPACITIES

Lips Removed



	Mass	Design Sectior	Axial Capacities	Design S	ection Moment C	Capacities	Design Yield Moment Capacities (Tension)				
Designation	Maco	Tension	Compression	about x-axis	about	y-axis	about x-axis	about	y-axis		
Designation	per m	$\phi_t N_t$	$\phi_{c} \mathcal{N}_{s}$	$\phi_{b}M_{sx}$	$\phi_{b} M_{syT}$	$\phi_{b} M_{syW}$	$\phi_{b} M_{sxf}$	$\phi_{b} M_{syfT}$	$\phi_{b} M_{syfW}$		
	kg/m	kN	kN	kNm	kNm	kNm	kNm	kNm	kNm		
150 x 45 x 1.55 LC-LR - G450	2.78	144	65.4	4.00	0.492	0.543	5.99	0.632	2.61		
150 x 45 x 1.15 LC-LR - G500	2.08	119	41.8	2.59	0.323	0.364	5.02	0.536	2.25		
150 x 45 x 0.95 LC-LR - G550	1.73	109	31.8	1.98	0.249	0.284	4.60	0.493	2.09		
150 x 45 x 0.75 LC-LR - G550	1.37	77.6	23.6	1.47	0.186	0.180	3.30	0.355	1.52		

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600 Clause 1.5.1.1 where appropriate.
- 5. $\phi_b M_{syT}$ and $\phi_b M_{syW}$ refer to bending about the y-axis causing compression in the toes and web of the channel respectively.
- 6. $\phi_b M_{syfT}$ and $\phi_b M_{syfW}$ are the design yield moment capacities for bending about the y-axis causing tension in the toes and web of the channel respectively.
- 7. All section moment capacities are applicable for unrestrained lengths up to 400 mm. Lips removed for more than this length is not expected.
- 8. Capacities are calculated for an equal flange channel using the average flange width.

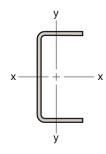
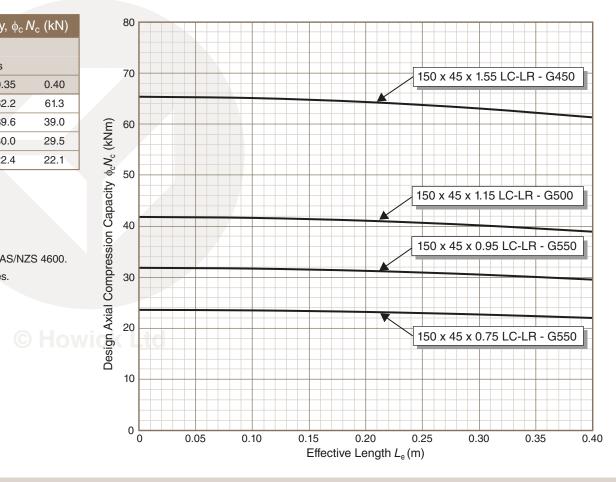
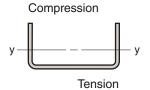


Table 6.4


AXIAL COMPRESSION CAPACITY

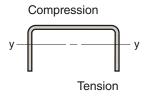
$$L_{\text{ex}} = L_{\text{ey}} = L_{\text{ez}}$$

Lips Removed

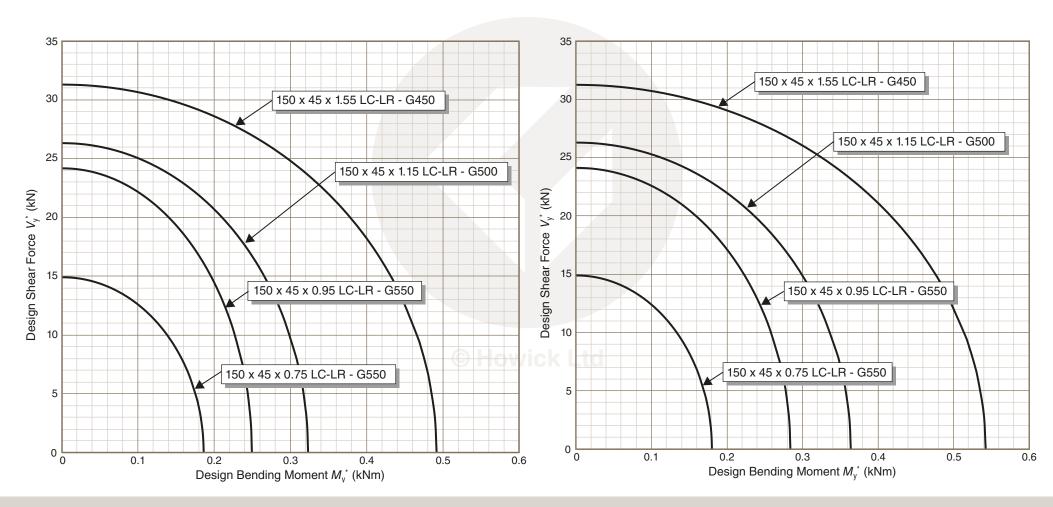


	Mass	Design Axial Compression Capacity, φ _c N _c (kN)										
Designation	per metre		Effec	ctive Length	n (L _e) in m	etres						
	kg/m	0.0	0.10	0.20	0.30	0.35	0.40					
150 x 45 x 1.55 LC-LR - G450	2.78	65.4	65.1	64.3	63.0	62.2	61.3					
150 x 45 x 1.15 LC-LR - G500	2.08	41.8	41.6	41.1	40.2	39.6	39.0					
150 x 45 x 0.95 LC-LR - G550	1.73	31.8	31.6	31.2	30.5	30.0	29.5					
150 x 45 x 0.75 LC-LR - G550	1.37	23.6	23.5	23.2	22.7	22.4	22.1					

- 1. Calculations of section capacities are in accordance with AS/NZS 4600.
- 2. Thickness refers to the base metal thickness (BMT).
- 3. Steel grades are in accordance with AS 1397.
- 4. The design yield stress and design tensile strength are reduced in acccordance with AS/NZS 4600.
- 5. Refer to Graph 3.1 for the limits of the local and distortional design moment capacities.
- 6. The effective length $L_e = L_{ex} = L_{ev} = L_{ez}$.


Graph 6.1

COMBINED BENDING & SHEAR


bending about y-axis

Lips Removed

Toes in Compression

Web in Compression

Part 7: Wall Framing Design Capacities

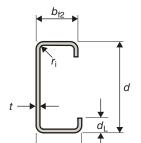
CONTENTS

Part 7: Wall Framing Design Capacities

Table 7.1: Wall stud Design Capacities - Unclad

Table 7.1: Wall stud Design Capacities - Clad Both Sides

Table 7.2: Wall Plate Design Capacities


GENERAL

This part of the Design Capacity tables provide capacities which may be used for the design of the sections as wall studs and wall plates. Three typical wall heights are specified for the wall studs.

The NASH wall stud and plate classifications for both Australia and New Zealand are also included in the tables for each section. These are based on the minimum properties and capacities given in the NASH references.

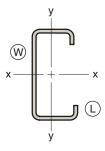


Table 7.1

WALL STUD DESIGN CAPACITIES

Unclad

	Mass per Design Properties and Capacities										NASH	
Designation	metre	I _x	$\phi_{\rm c}N_{\rm s}$	$\phi_{\rm c}N_{\rm c}$	$\phi_{b}M_{sx}$	$\phi_{b} M_{bx}$	$\phi_{b}M_{sxf}$	$\phi_{v} V_{vx}$	N _{ex}	$\phi_t N_t$	Wall Stud C	Classification
	kg/m	10 ⁶ mm ⁴	kN	kN	kNm	kNm	kNm	kN	kN	kN	Australia	New Zealand
					Stud	Height 2440	mm					
150 x 45 x 1.55 LC - G450	3.04	1.27	6.40	5.21	22.5	78.0	60.5	121	6.86	658	SC	SD
150 x 45 x 1.15 LC - G500	2.27	0.957	4.26	3.65	9.14	50.1	38.0	97.9	5.74	496	SC	SD
150 x 45 x 0.95 LC - G550	1.89	0.797	3.31	2.93	5.14	38.2	28.3	85.9	5.26	413	SC	SD
150 x 45 x 0.75 LC - G550	1.49	0.634	2.08	1.96	2.52	23.7	18.1	61.3	3.77	329	SC	SC
	Stud Height 2740 mm											
150 x 45 x 1.55 LC - G450	3.04	1.27	6.40	5.21	22.5	78.0	56.7	121	6.86	522	SC	SD
150 x 45 x 1.15 LC - G500	2.27	0.957	4.26	3.65	9.14	50.1	35.4	97.9	5.74	393	SC	SD
150 x 45 x 0.95 LC - G550	1.89	0.797	3.31	2.93	5.14	38.2	26.2	85.9	5.26	328	SC	SD
150 x 45 x 0.75 LC - G550	1.49	0.634	2.08	1.89	2.52	23.7	16.9	61.3	3.77	261	SC	SC
					Stud	Height 3040	mm					
150 x 45 x 1.55 LC - G450	3.04	1.27	6.40	5.21	22.5	78.0	63.8	121	6.86	424	SC	SD
150 x 45 x 1.15 LC - G500	2.27	0.957	4.26	3.65	9.14	50.1	40.3	97.9	5.74	320	SC	SD
150 x 45 x 0.95 LC - G550	1.89	0.797	3.31	2.93	5.14	38.2	30.1	85.9	5.26	266	SC	SD
150 x 45 x 0.75 LC - G550	1.49	0.634	2.08	1.96	2.52	23.7	19.2	61.3	3.77	212	SC	SC

Wall Stud Design Assumptions

Effective Lengths for Design										
Stud Height (mm)	2440	2740	3040							
No. of Noggings	1	1	2							
L _{ex} (mm)	1952	2192	2432							
L _{ey} (mm)	976	1096	810							
L _{ez} (mm)	976	1096	810							

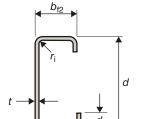
NOTES:

- 1. Noggings are equally spaced.
- 2. Lateral restraint is assumed to be provided by noggings only. Additional lateral restraint provided by cladding is ignored.
- 3. Both flanges of the stud are restrained by the top and bottom plates and the noggings.
- 4. Effective lengths are taken as 80% of the distance between restraints in accordance with NASH Handbook Clause 3.4.2.
- 5. No allowance has been made for holes in the web of the stud.

Symbol	Description
I _x	second moment of area about the major principal x-axis
φ _c N _s	design section capacity of a member in compression
φ _c N _c	design member capacity of a member in compression
$\phi_{b} M_{sx}$	design section moment capacity about the x-axis
$\phi_{b} M_{bx}$	design member moment capacity about the x-axis
φ _b M _{sxf}	design yield moment capacity about the x-axis
$\phi_{v} V_{vx}$	design shear capacity of the cross-section perpendicular to the x-axis
N _{ex}	elastic buckling load about the major principal x-axis
$\phi_t N_t$	design section capacity of a member in tension
L _{ex}	effective length for buckling about the major principal x-axis
L _{ey}	effective length for buckling about the minor principal y-axis
L _{ez}	effective length for torsional buckling about the longitudinal z-axis

References

AS/NZS 4600 Cold-Formed Steel Structures.


NASH Standard (NZ), Residential and Low-Rise Steel Framing, Part 1: Design Criteria.

NASH Standard (Aust.), Residential and Low-Rise Steel Framing, Part 2: Design Solutions.

NASH Handbook (Aust.), Best Practice for Design and Construction of Residential and Low-Rise Steel Framing, Chapter 3.

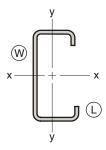


Table 7.2

WALL STUD DESIGN CAPACITIES

Clad Both Sides

	Mass				NASH							
Designation	per metre		Lateral	Actions		Compr	ession	Tension	Combine	d Actions		Stud
Boolghallon	Inelie	l _x	$\phi_{b}M_{sx}$	$\phi_{b} M_{bx}$	$\phi_{v} V_{vx}$	$\phi_{c} N_{s}$	$\phi_{\rm c}N_{\rm c}$	φ _t N _t	$\phi_{b} M_{sxf}$	N _{ex}	Classi	fication
	kg/m	10 ⁶ mm ⁴	kNm	kNm	kN	kN	kN	kN	kNm	kN	Australia	New Zealand
					Stud I	Height 2440	mm					
150 x 45 x 1.55 LC - G450	3.04	1.27	6.40	5.21	22.5	78.0	66.4	121	6.86	658	SC	SD
150 x 45 x 1.15 LC - G500	2.27	0.957	4.26	3.65	9.14	50.1	42.7	97.9	5.74	496	SC	SD
150 x 45 x 0.95 LC - G550	1.89	0.797	3.31	2.93	5.14	38.2	32.5	85.9	5.26	413	SC	SD
150 x 45 x 0.75 LC - G550	1.49	0.634	2.08	1.96	2.52	23.7	21.0	61.3	3.77	329	SC	SD
					Stud I	Height 2740	mm					
150 x 45 x 1.55 LC - G450	3.04	1.27	6.40	5.21	22.5	78.0	66.4	121	6.86	522	SC	SD
150 x 45 x 1.15 LC - G500	2.27	0.957	4.26	3.65	9.14	50.1	42.7	97.9	5.74	393	SC	SD
150 x 45 x 0.95 LC - G550	1.89	0.797	3.31	2.93	5.14	38.2	32.5	85.9	5.26	328	SC	SD
150 x 45 x 0.75 LC - G550	1.49	0.634	2.08	1.96	2.52	23.7	20.7	61.3	3.77	261	SC	SD
					Stud I	Height 3040	mm					
150 x 45 x 1.55 LC - G450	3.04	1.27	6.40	5.21	22.5	78.0	66.4	121	6.86	424	SC	SD
150 x 45 x 1.15 LC - G500	2.27	0.957	4.26	3.65	9.14	50.1	42.7	97.9	5.74	320	SC	SD
150 x 45 x 0.95 LC - G550	1.89	0.797	3.31	2.93	5.14	38.2	32.2	85.9	5.26	266	SC	SD
150 x 45 x 0.75 LC - G550	1.49	0.634	2.08	1.96	2.52	23.7	20.4	61.3	3.77	212	SC	SD

Wall Stud Design Assumptions

Effective Lengths for Design										
Stud Height (mm)	2440	2740	3040							
No. of Noggings	1	1	2							
L _{ex} (mm)	1952	2192	2432							
L _{ey} (mm)	600	600	600							
L _{ez} (mm)	600	600	600							

NOTES:

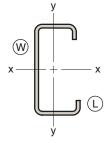
- 1. Noggings are equally spaced.
- 2. Lateral restraint is assumed to be provided the cladding.
- 3. Both flanges of the stud are restrained by the top and bottom plates, the nogging, and the cladding
- 4. Effective length $L_{\rm ex}$ is taken as 80% of the ength of the stud in accordance with NASH Handbook Clause 3.4.2.
- 5. Effective lengths L_{ev} and L_{ez} are assumed to be as per the table above.
- 6. No allowance has been made for holes in the web of the stud.

Symbol	Description
I _x	second moment of area about the major principal x-axis
$\phi_{c} N_{s}$	design section capacity of a member in compression
$\phi_{c} N_{c}$	design member capacity of a member in compression
$\phi_{b}M_{sx}$	design section moment capacity about the x-axis
$\phi_{b} M_{bx}$	design member moment capacity about the x-axis
φ _b M _{sxf}	design yield moment capacity about the x-axis
$\phi_{V} V_{VX}$	design shear capacity of the cross-section perpendicular to the x-axis
N _{ex}	elastic buckling load about the major principal x-axis
$\phi_t N_t$	design section capacity of a member in tension
L _{ex}	effective length for buckling about the major principal x-axis
L _{ey}	effective length for buckling about the minor principal y-axis
L _{ez}	effective length for torsional buckling about the longitudinal z-axis

References

AS/NZS 4600 Cold-Formed Steel Structures.

NASH Standard (NZ), Residential and Low-Rise Steel Framing, Part 1: Design Criteria.


NASH Standard (Aust.), Residential and Low-Rise Steel Framing, Part 2: Design Solutions.

NASH Handbook (Aust.), Best Practice for Design and Construction of Residential and Low-Rise Steel Framing, Chapter 3.

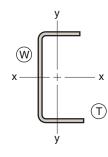


Table 7.2

WALL PLATE DESIGN CAPACITIES

Designation	Mass per metre	Design Properties and Capacities								NASH	
		Full Lipped Channel (at midspan)				Channel Lips Removed (at supports)				Wall Plate Classification	
			$\phi_{\rm c}N_{\rm c}$	$\phi_{\rm b}M_{\rm byL}$	$\phi_{b} M_{byW}$	$\phi_{c}N_{s}$	$\phi_{b} M_{syT}$	$\phi_{b} M_{syW}$	$\phi_{\text{v}} V_{\text{vy}}$		
	kg/m	10 ⁶ mm ⁴	kN	kNm	kNm	kN	kNm	kNm	kN	Australia	New Zealand
150 x 45 x 1.55 LC - G450	3.04	0.0910	66.4	0.958	0.864	65.4	0.492	0.543	31.3	PC	PE
150 x 45 x 1.15 LC - G500	2.27	0.0698	42.7	0.693	0.575	41.8	0.323	0.364	26.3	РВ	PC
150 x 45 x 0.95 LC - G550	1.89	0.0586	32.5	0.566	0.446	31.8	0.249	0.284	24.1	РВ	PC
150 x 45 x 0.75 LC - G550	1.49	0.0470	21.0	0.383	0.281	23.6	0.186	0.180	14.9	PA	PA

- 1. The capacities for the full lipped channels are based on an effective length $L_{\rm e}$ = 0.6 m.
- 2. The capacities of channels with lips removed are section capacities.
- 3. No allowance has been made for holes in the web of the plate in the determination of I_{v} .
- 4. The NASH Classifications are based on the capacities of the full lipped channels.
- 5. The second moment of area I_v for the full lipped channel is used for the NASH Australia classification.

Symbol	Description				
l _y	second moment of area about the minor principal y-axis				
φ _c N _s	design section capacity of a member in compression				
φ _c N _c	design member capacity of a member in compression				
$\phi_{b} M_{byL}$	design section moment capacity about the y-axis (lips in compression)				
$\phi_{b}M_{byW}$	design member moment capacity about the y-axis (web in compression)				
$\phi_{b}M_{syT}$	design section moment capacity about the y-axis (toes in compression)				
$\phi_{b}M_{syW}$	design section moment capacity about the y-axis (web in compression				
$\phi_{v} V_{vy}$	design shear capacity of the cross-section perpendicular to the y-axis				
L _e	effective length ($L_{ex} = L_{ey} = L_{ez}$)				

Appendix A: SIGNATURE CURVES

CONTENTS

Appendix A: Signature Curves

```
General
Graph A.1: 150 x 45 x 1.55 LC - Axial Compression
Graph A.2: 150 x 45 x 1.55 LC - Bending about x-axis
Graph A.3:
            150 x 45 x 1.55 LC - Bending about y-axis (Lips in Compression)
Graph A.4: 150 x 45 x 1.55 LC - Bending about y-axis (Web in Compression)
Graph A.5: 150 x 45 x 1.15 LC - Axial Compression
Graph A.6: 150 x 45 x 1.15 LC - Bending about x-axis
Graph A.7: 150 x 45 x 1.15 LC - Bending about y-axis (Lips in Compression)
Graph A.8: 150 x 45 x 1.15 LC - Bending about y-axis (Web in Compression)
Graph A.9: 150 x 45 x 0.95 LC - Axial Compression
Graph A.10: 150 x 45 x 0.95 LC - Bending about x-axis
Graph A.11: 150 x 45 x 0.95 LC - Bending about y-axis (Lips in Compression)
Graph A.12: 150 x 45 x 0.95 LC - Bending about y-axis (Web in Compression)
Graph A.13: 150 x 45 x 0.75 LC - Axial Compression
Graph A.14: 150 x 45 x 0.75 LC - Bending about x-axis
Graph A.15: 150 x 45 x 0.75 LC - Bending about y-axis (Lips in Compression)
Graph A.16: 150 x 45 x 0.75 LC - Bending about y-axis (Web in Compression
```

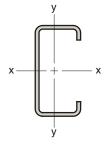
GENERAL

This appendix provides the signature curves for each of the sections contained in these Design Capacity Tables. The signature curves were produced in the Thin-Wall buckling analysis program developed by The University of Sydney, and form the basis of design using the Direct Strength Method (DSM). They are included here to provide a clear picture of the buckling behaviour of the sections under the following loading conditions:

axial compression

bending about the x-axis

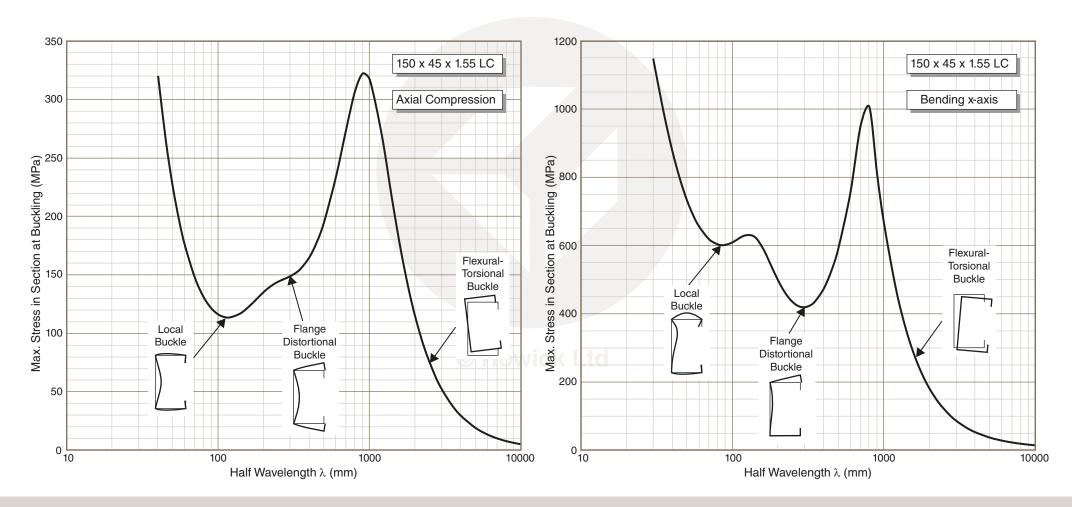
bending about the y-axis (lips in compression)


bending about the y-axis (web in compression)

SIGNATURE CURVE

150 x 45 x 1.55 LC

Axial Compression

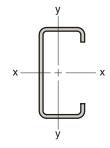


Graph A.2

SIGNATURE CURVE

150 x 45 x 1.55 LC

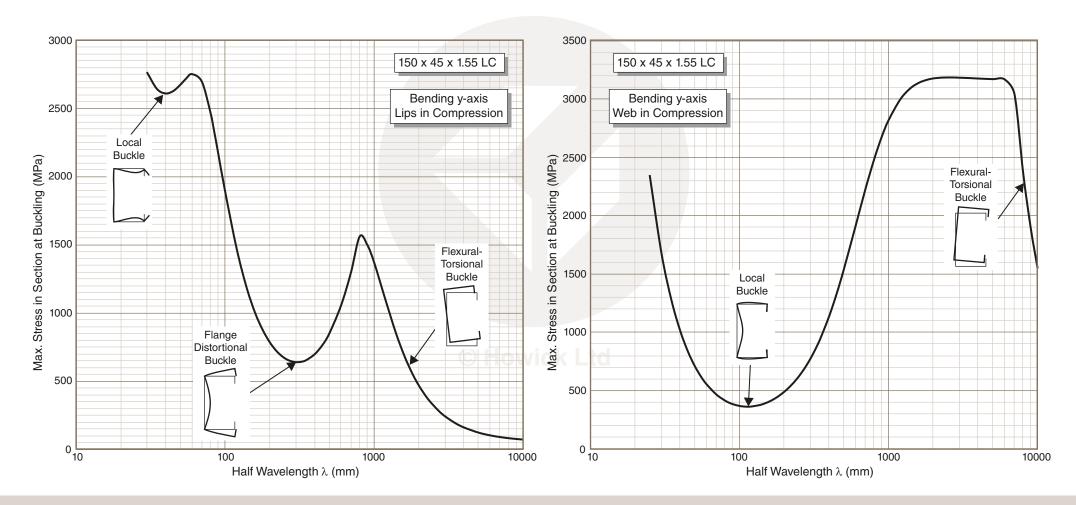
Bending about x-axis



SIGNATURE CURVE

150 x 45 x 1.55 LC

Bending about y-axis (Lips in Compression)

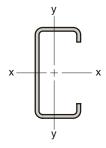


Graph A.4

SIGNATURE CURVE

150 x 45 x 1.55 LC

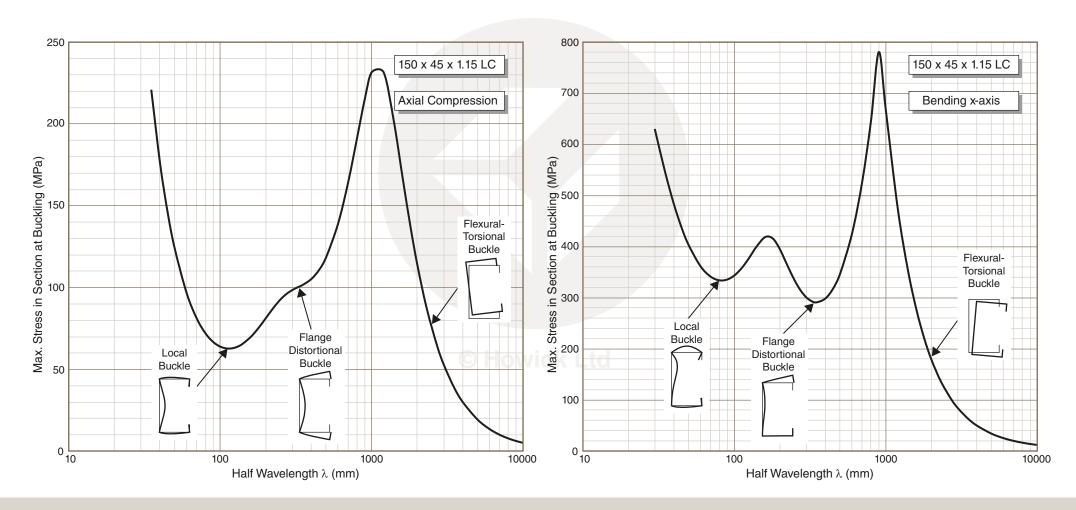
Bending about y-axis (Web in Compression)



SIGNATURE CURVE

150 x 45 x 1.15 LC

Axial Compression

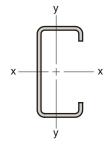


Graph A.6

SIGNATURE CURVE

150 x 45 x 1.15 LC

Bending about x-axis



SIGNATURE CURVE

150 x 45 x 1.15 LC

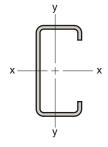
Bending about y-axis (Lips in Compression)

Graph A.8

SIGNATURE CURVE

150 x 45 x 1.15 LC

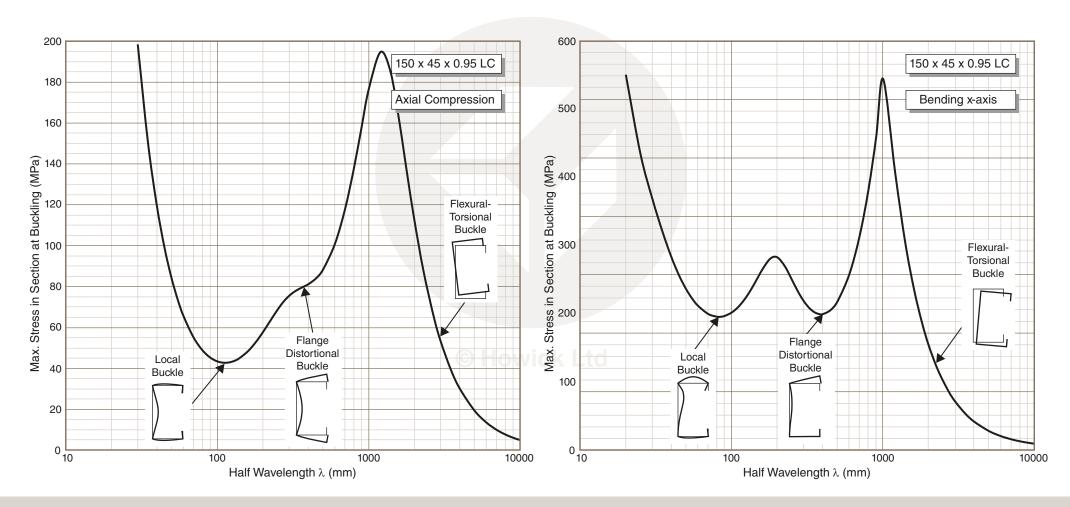
Bending about y-axis (Web in Compresssion)



SIGNATURE CURVE

150 x 45 x 0.95 LC

Axial Compression

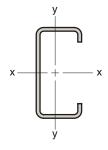


Graph A.10

SIGNATURE CURVE

150 x 45 x 0.95 LC

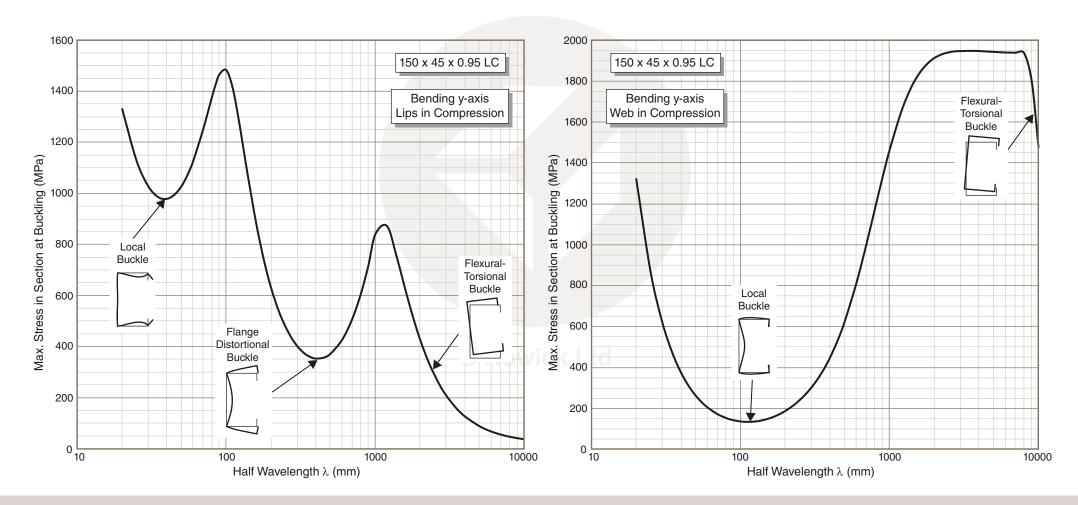
Bending about x-axis



SIGNATURE CURVE

150 x 45 x 0.95 LC

Bending about y-axis (Lips in Compression)

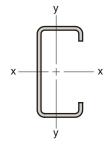


Graph A.12

SIGNATURE CURVE

150 x 45 x 0.95 LC

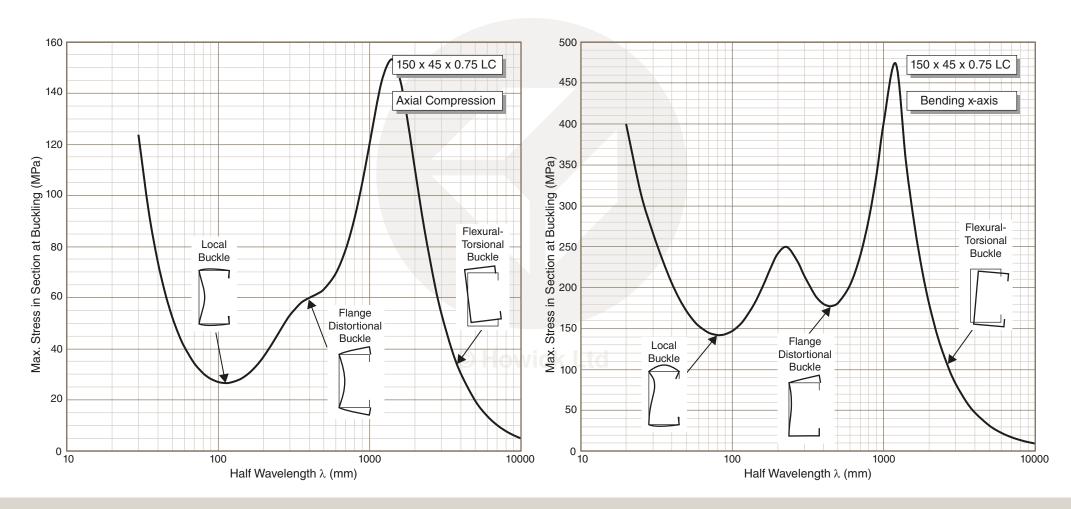
Bending about y-axis (Web in Compression)



SIGNATURE CURVE

150 x 45 x 0.75 LC

Axial Compression

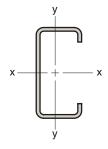


Graph A.14

SIGNATURE CURVE

150 x 45 x 0.75 LC

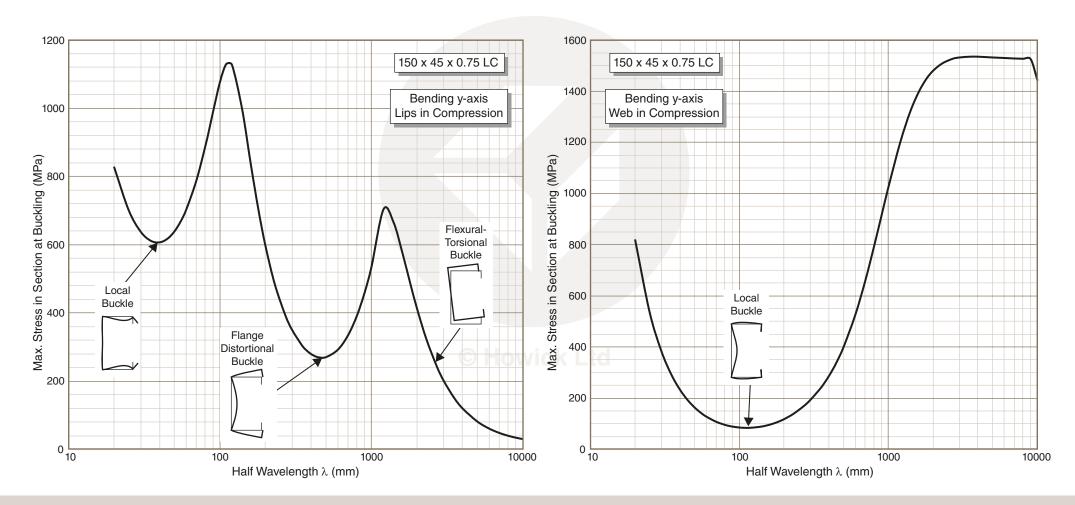
Bending about x-axis



SIGNATURE CURVE

150 x 45 x 0.75 LC

Bending about y-axis (Lips in Compression)



Graph A.16

SIGNATURE CURVE

150 x 45 x 0.75 LC

Bending about y-axis (Web in Compression)

Howick Ltd 117 Vincent St Howick Auckland 2014 New Zealand Telephone: +64 9 4534 5569 Internet: www.howickltd.com

Version 02 • January 2019